
Tastypie Documentation
Release 0.8.1-beta

Daniel Lindsley, Cody Soyland & Matt Croydon

August 03, 2013

CONTENTS

i

ii

Tastypie Documentation, Release 0.8.1-beta

Tastypie is an webservice API framework for Django. It provides a convenient, yet powerful and highly customizable,
abstraction for creating REST-style interfaces.

CONTENTS 1

Tastypie Documentation, Release 0.8.1-beta

2 CONTENTS

CHAPTER

ONE

GETTING STARTED WITH TASTYPIE

Tastypie is a reusable app (that is, it relies only on it’s own code and focuses on providing just a REST-style API) and
is suitable for providing an API to any application without having to modify the sources of that app.

Not everyone’s needs are the same, so Tastypie goes out of it’s way to provide plenty of hooks for overridding or
extending how it works.

Note: If you hit a stumbling block, you can join #tastypie on irc.freenode.net to get help.

This tutorial assumes that you have a basic understand of Django as well as how proper REST-style APIs ought to
work. We will only explain the portions of the code that are Tastypie-specific in any kind of depth.

For example purposes, we’ll be adding an API to a simple blog application. Here is myapp/models.py:

import datetime
from django.contrib.auth.models import User
from django.db import models
from django.template.defaultfilters import slugify

class Entry(models.Model):
user = models.ForeignKey(User)
pub_date = models.DateTimeField(default=datetime.datetime.now)
title = models.CharField(max_length=200)
slug = models.SlugField
body = models.TextField()

def __unicode__(self):
return self.title

def save(self, *args, **kwargs):
For automatic slug generation.
if not self.slug:

self.slug = slugify(self.title)[:50]

return super(Entry, self).save(*args, **kwargs)

With that, we’ll move on to installing and configuring Tastypie.

1.1 Installation

Installing Tastypie is as simple as checking out the source and adding it to your project or PYTHONPATH.

3

Tastypie Documentation, Release 0.8.1-beta

1. Download the dependencies:

• Python 2.4+

• Django 1.0+ (tested on Django 1.1+)

• mimeparse (http://code.google.com/p/mimeparse/)

• dateutil (http://labix.org/python-dateutil)

• OPTIONAL - lxml (http://codespeak.net/lxml/) if using the XML serializer

• OPTIONAL - pyyaml (http://pyyaml.org/) if using the YAML serializer

• OPTIONAL - uuid (present in 2.5+, downloadable from http://pypi.python.org/pypi/uuid/) if us-
ing the ApiKey authentication

2. Check out tastypie from GitHub.

3. Either symlink the tastypie directory into your project or copy the directory in. What ever works
best for you.

Note: Once tastypie passes version 1.0, it will become officially available on PyPI. Once that is the case, a sudo
pip install tastypie or sudo easy_install tastypie should be available.

1.2 Configuration

The only mandatory configuration is adding ’tastypie’ to your INSTALLED_APPS. This isn’t strictly necessary,
as Tastypie has only one non-required model, but may ease usage.

You have the option to set up a number of settings (see Tastypie Settings) but most have sane defaults and are not
required unless you need to tweak their values.

1.3 Creating Resources

REST-style architecture talks about resources, so unsurprisingly integrating with Tastypie involves creating
Resource classes. For our simple application, we’ll create a file for these in myapp/api.py, though they can
live anywhere in your application:

myapp/api.py
from tastypie.resources import ModelResource
from myapp.models import Entry

class EntryResource(ModelResource):
class Meta:

queryset = Entry.objects.all()
resource_name = ’entry’

This class, by virtue of being a ModelResource subclass, will introspect all non-relational fields on the Entry
model and create it’s own ApiFields that map to those fields, much like the way Django’s ModelForm class
introspects.

4 Chapter 1. Getting Started with Tastypie

http://code.google.com/p/mimeparse/
http://labix.org/python-dateutil
http://codespeak.net/lxml/
http://pyyaml.org/
http://pypi.python.org/pypi/uuid/
http://github.com/toastdriven/django-tastypie
http://pypi.python.org/

Tastypie Documentation, Release 0.8.1-beta

1.4 Hooking Up The Resource(s)

Now that we have our EntryResource, we can hook it up in our URLconf. To do this, we simply instantiate the
resource in our URLconf and hook up its urls:

urls.py
from django.conf.urls.defaults import *
from myapp.api import EntryResource

entry_resource = EntryResource()

urlpatterns = patterns(’’,
The normal jazz here...
(r’^blog/’, include(’myapp.urls’)),
(r’^api/entry/’, include(entry_resource.urls)),

)

Now it’s just a matter of firing up server (./manage.py runserver) and going to
http://127.0.0.1:8000/api/entry/?format=json. You should get back a list of Entry-like objects.

Note: The ?format=json is an override required to make things look decent in the browser (accept headers vary
between browsers). Tastypie properly handles the Accept header. So the following will work properly:

curl -H "Accept: application/json" http://127.0.0.1:8000/api/entry/

But if you’re sure you want something else (or want to test in a browser), Tastypie lets you specify ?format=...
when you really want to force a certain type.

At this point, a bunch of other URLs are also available. Try out any/all of the following (assuming you have at least
three records in the database):

• http://127.0.0.1:8000/api/entry/?format=json

• http://127.0.0.1:8000/api/entry/1/?format=json

• http://127.0.0.1:8000/api/entry/schema/?format=json

• http://127.0.0.1:8000/api/entry/set/1;3/?format=json

With just seven lines of code, we have a full working REST interface to our Entry model. In addition, full
GET/POST/PUT/DELETE support is already there, so it’s possible to really work with all of the data. Well, almost.

You see, you’ll note that not quite all of our data is there. Markedly absent is the user field, which is a ForeignKey
to Django’s User model. Tastypie does NOT introspect related data because it has no way to know how you want to
represent that data.

And since that relation isn’t there, any attempt to POST/PUT new data will fail, because no user is present, which is
a required field on the model.

This is easy to fix, but we’ll need to flesh out out API a little more.

1.5 Creating More Resources

In order to handle our user relation, we’ll need to create a UserResource and tell the EntryResource to use
it. So we’ll modify myapp/api.py to match the following code:

1.4. Hooking Up The Resource(s) 5

http://127.0.0.1:8000/api/entry/?format=json
http://127.0.0.1:8000/api/entry/?format=json
http://127.0.0.1:8000/api/entry/1/?format=json
http://127.0.0.1:8000/api/entry/schema/?format=json
http://127.0.0.1:8000/api/entry/set/1;3/?format=json

Tastypie Documentation, Release 0.8.1-beta

myapp/api.py
from django.contrib.auth.models import User
from tastypie import fields
from tastypie.resources import ModelResource
from myapp.models import Entry

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = ’user’

class EntryResource(ModelResource):
user = fields.ForeignKey(UserResource, ’user’)

class Meta:
queryset = Entry.objects.all()
resource_name = ’entry’

We simply created a new ModelResource subclass called UserResource. Then we added a field to
EntryResource that specified that the user field points to a UserResource for that data.

Now we should be able to get all of the fields back in our response. But since we have another full, working resource
on our hands, we should hook that up to our API as well. And there’s a better way to do it.

1.6 Adding To The Api

Tastypie ships with an Api class, which lets you bind multiple Resources together to form a coherent API. Adding
it to the mix is simple.

We’ll go back to our URLconf (urls.py) and change it to match the following:

urls.py
from django.conf.urls.defaults import *
from tastypie.api import Api
from myapp.api import EntryResource, UserResource

v1_api = Api(name=’v1’)
v1_api.register(UserResource())
v1_api.register(EntryResource())

urlpatterns = patterns(’’,
The normal jazz here...
(r’^blog/’, include(’myapp.urls’)),
(r’^api/’, include(v1_api.urls)),

)

Note that we’re now creating an Api instance, registering our EntryResource and UserResource instances
with it and that we’ve modified the urls to now point to v1_api.urls.

This makes even more data accessible, so if we start up the runserver again, the following URLs should work:

• http://127.0.0.1:8000/api/v1/?format=json

• http://127.0.0.1:8000/api/v1/user/?format=json

• http://127.0.0.1:8000/api/v1/user/1/?format=json

6 Chapter 1. Getting Started with Tastypie

http://127.0.0.1:8000/api/v1/?format=json
http://127.0.0.1:8000/api/v1/user/?format=json
http://127.0.0.1:8000/api/v1/user/1/?format=json

Tastypie Documentation, Release 0.8.1-beta

• http://127.0.0.1:8000/api/v1/user/schema/?format=json

• http://127.0.0.1:8000/api/v1/user/set/1;3/?format=json

• http://127.0.0.1:8000/api/v1/entry/?format=json

• http://127.0.0.1:8000/api/v1/entry/1/?format=json

• http://127.0.0.1:8000/api/v1/entry/schema/?format=json

• http://127.0.0.1:8000/api/v1/entry/set/1;3/?format=json

Additionally, the representations out of EntryResource will now include the user field and point to an endpoint
like /api/v1/users/1/ to access that user’s data. And full POST/PUT delete support should now work.

But there’s several new problems. One is that our new UserResource leaks too much data, including fields like
email, password, is_active and is_staff. Another is that we may not want to allow end users to alter
User data. Both of these problems are easily fixed as well.

1.7 Limiting Data And Access

Cutting out the email, password, is_active and is_staff fields is easy to do. We simply modify our
UserResource code to match the following:

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = ’user’
excludes = [’email’, ’password’, ’is_active’, ’is_staff’, ’is_superuser’]

The excludes directive tells UserResource which fields not to include in the output. If you’d rather whitelist
fields, you could do:

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = ’user’
fields = [’username’, ’first_name’, ’last_name’, ’last_login’]

Now that the undesirable fields are no longer included, we can look at limiting access. This is also easy and involves
making our UserResource look like:

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = ’user’
excludes = [’email’, ’password’, ’is_active’, ’is_staff’, ’is_superuser’]
allowed_methods = [’get’]

Now only HTTP GET requests will be allowed on /api/v1/user/ endpoints. If you require more granular control,
both list_allowed_methods and detail_allowed_methods options are supported.

1.8 Beyond The Basics

We now have a full working API for our application. But Tastypie supports many more features, like:

• authentication

1.7. Limiting Data And Access 7

http://127.0.0.1:8000/api/v1/user/schema/?format=json
http://127.0.0.1:8000/api/v1/user/set/1;3/?format=json
http://127.0.0.1:8000/api/v1/entry/?format=json
http://127.0.0.1:8000/api/v1/entry/1/?format=json
http://127.0.0.1:8000/api/v1/entry/schema/?format=json
http://127.0.0.1:8000/api/v1/entry/set/1;3/?format=json

Tastypie Documentation, Release 0.8.1-beta

• caching

• throttling

• filtering_sorting

• serialization

Tastypie is also very easy to override and extend. For some common patterns and approaches, you should refer to the
cookbook documentation.

8 Chapter 1. Getting Started with Tastypie

CHAPTER

TWO

TASTYPIE SETTINGS

This is a comprehensive list of the settings Tastypie recognizes.

2.1 API_LIMIT_PER_PAGE

Optional

This setting controls what the default number of records Tastypie will show in a list view is.

This is only used when a user does not specify a limit GET parameter and the Resource subclass has not overrid-
den the number to be shown.

An example:

API_LIMIT_PER_PAGE = 50

Defaults to 20.

9

