

 Navigation

 	
 index

 	
 next |

 	Tastypie 0.9.0-beta documentation

Table Of Contents

	Welcome to Tastypie!
	Getting Started with Tastypie

	Tastypie Settings

	Resources

	Api

	Caching

	Authentication / Authorization

	Serialization

	Throttling

	Tastypie Cookbook

	Sites Using Tastypie

	Getting Help

	Quick Start

	Requirements

	Getting Started with Tastypie
	Installation

	Configuration

	Creating Resources

	Hooking Up The Resource(s)

	Creating More Resources

	Adding To The Api

	Limiting Data And Access

	Beyond The Basics

	Tastypie Settings
	API_LIMIT_PER_PAGE

	Resources
	Quick Start

	Why Class-Based?

	Why Resource vs. ModelResource?

	Flow Through The Request/Response Cycle

	What Are Bundles?

	Resource Options (AKA Meta)

	Basic Filtering

	Advanced Filtering

	Resource Methods

	ModelResource Methods

	Api
	Quick Start

	Api Methods

	Authentication / Authorization
	Usage

	Authentication Options

	Authorization Options

	Implementing Your Own Authentication/Authorization

	Caching
	Usage

	Caching Options

	Implementing Your Own Cache

	Serialization
	Usage

	Implementing Your Own Serializer

	Serializer Methods

	Throttling
	Usage

	Throttle Options

	Implementing Your Own Throttle

	Tastypie Cookbook
	Adding Custom Values

	Sites Using Tastypie
	LJWorld Marketplace

	Forkinit

Indices and tables

	Search Page

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Welcome to Tastypie!

Tastypie is an webservice API framework for Django. It provides a convenient,
yet powerful and highly customizable, abstraction for creating REST-style
interfaces.

	Getting Started with Tastypie
	Installation

	Configuration

	Creating Resources

	Hooking Up The Resource(s)

	Creating More Resources

	Adding To The Api

	Limiting Data And Access

	Beyond The Basics

	Tastypie Settings
	API_LIMIT_PER_PAGE

	Resources
	Quick Start

	Why Class-Based?

	Why Resource vs. ModelResource?

	Flow Through The Request/Response Cycle

	What Are Bundles?

	Resource Options (AKA Meta)

	Basic Filtering

	Advanced Filtering

	Resource Methods

	ModelResource Methods

	Api
	Quick Start

	Api Methods

	Caching
	Usage

	Caching Options

	Implementing Your Own Cache

	Authentication / Authorization
	Usage

	Authentication Options

	Authorization Options

	Implementing Your Own Authentication/Authorization

	Serialization
	Usage

	Implementing Your Own Serializer

	Serializer Methods

	Throttling
	Usage

	Throttle Options

	Implementing Your Own Throttle

	Tastypie Cookbook
	Adding Custom Values

	Sites Using Tastypie
	LJWorld Marketplace

	Forkinit

Getting Help

There are two primary ways of getting help. We have a mailing list [http://groups.google.com/group/django-tastypie/] hosted at
Google (http://groups.google.com/group/django-tastypie/) and an IRC channel
(#tastypie on irc.freenode.net) to get help, want to bounce idea or
generally shoot the breeze.

Quick Start

	Add tastypie to INSTALLED_APPS.

	Create an api directory in your app with a bare __init__.py.

	Create an <my_app>/api/resources.py file and place the following in it:

from tastypie.resources import ModelResource
from my_app.models import MyModel

class MyModelResource(ModelResource):
 class Meta:
 queryset = MyModel.objects.all()
 allowed_methods = ['get']

	In your root URLconf, add the following code (around where the admin code might be):

from tastypie.api import API
from my_app.api.resources import MyModelResource

v1_api = Api(api_name='v1')
v1_api.register(MyModelResource())

urlpatterns = patterns('',
 # ...more URLconf bits here...
 # Then add:
 (r'^api/', include(v1_api.urls)),
)

	Hit http://localhost:8000/api/v1/?format=json in your browser!

Requirements

Tastypie requires the following modules. If you use Pip [http://pip.openplans.org/], you can install
the necessary bits via the included requirements.txt:

	Python 2.4+

	Django 1.0+

	mimeparse 0.1.3+ (http://code.google.com/p/mimeparse/)
	Older versions will work, but their behavior on JSON/JSONP is a touch wonky.

	dateutil (http://labix.org/python-dateutil)

	lxml (http://codespeak.net/lxml/) if using the XML serializer

	pyyaml (http://pyyaml.org/) if using the YAML serializer

If you choose to use Python 2.4, be warned that you will also need to grab the
following modules:

	uuid (present in 2.5+, downloadable from http://pypi.python.org/pypi/uuid/) if using the ApiKey authentication

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Getting Started with Tastypie

Tastypie is a reusable app (that is, it relies only on it’s own code and
focuses on providing just a REST-style API) and is suitable for providing an
API to any application without having to modify the sources of that app.

Not everyone’s needs are the same, so Tastypie goes out of it’s way to provide
plenty of hooks for overridding or extending how it works.

Note

If you hit a stumbling block, you can join
#tastypie on irc.freenode.net to get help.

This tutorial assumes that you have a basic understand of Django as well as
how proper REST-style APIs ought to work. We will only explain the portions
of the code that are Tastypie-specific in any kind of depth.

For example purposes, we’ll be adding an API to a simple blog application.
Here is myapp/models.py:

import datetime
from django.contrib.auth.models import User
from django.db import models
from django.template.defaultfilters import slugify

class Entry(models.Model):
 user = models.ForeignKey(User)
 pub_date = models.DateTimeField(default=datetime.datetime.now)
 title = models.CharField(max_length=200)
 slug = models.SlugField
 body = models.TextField()

 def __unicode__(self):
 return self.title

 def save(self, *args, **kwargs):
 # For automatic slug generation.
 if not self.slug:
 self.slug = slugify(self.title)[:50]

 return super(Entry, self).save(*args, **kwargs)

With that, we’ll move on to installing and configuring Tastypie.

Installation

Installing Tastypie is as simple as checking out the source and adding it to
your project or PYTHONPATH.

	Download the dependencies:

	Python 2.4+

	Django 1.0+ (tested on Django 1.1+)

	mimeparse 0.1.3+ (http://code.google.com/p/mimeparse/)
	Older versions will work, but their behavior on JSON/JSONP is a touch wonky.

	dateutil (http://labix.org/python-dateutil)

	OPTIONAL - lxml (http://codespeak.net/lxml/) if using the XML serializer

	OPTIONAL - pyyaml (http://pyyaml.org/) if using the YAML serializer

	OPTIONAL - uuid (present in 2.5+, downloadable from
http://pypi.python.org/pypi/uuid/) if using the ApiKey authentication

	Check out tastypie from GitHub [http://github.com/toastdriven/django-tastypie].

	Either symlink the tastypie directory into your project or copy the
directory in. What ever works best for you.

Note

Once tastypie passes version 1.0, it will become officially available on
PyPI [http://pypi.python.org/]. Once that is the case, a sudo pip install tastypie or sudo
easy_install tastypie should be available.

Configuration

The only mandatory configuration is adding 'tastypie' to your
INSTALLED_APPS. This isn’t strictly necessary, as Tastypie has only one
non-required model, but may ease usage.

You have the option to set up a number of settings (see Tastypie Settings) but
most have sane defaults and are not required unless you need to tweak their
values.

Creating Resources

REST-style architecture talks about resources, so unsurprisingly integrating
with Tastypie involves creating Resource classes.
For our simple application, we’ll create a file for these in myapp/api.py,
though they can live anywhere in your application:

myapp/api.py
from tastypie.resources import ModelResource
from myapp.models import Entry

class EntryResource(ModelResource):
 class Meta:
 queryset = Entry.objects.all()
 resource_name = 'entry'

This class, by virtue of being a ModelResource
subclass, will introspect all non-relational fields on the Entry model and
create it’s own ApiFields that map to those fields,
much like the way Django’s ModelForm class introspects.

Note

The resource_name within the Meta class is optional. If not
provided, it is automatically generated off the classname, removing any
instances of Resource and lowercasing the string. So
EntryResource would become just entry.

It’s included in this example for clarity, especially when looking at
the URLs, but you may feel free to omit it if you’re comfortable with
this behavior.

Hooking Up The Resource(s)

Now that we have our EntryResource, we can hook it up in our URLconf. To
do this, we simply instantiate the resource in our URLconf and hook up its
urls:

urls.py
from django.conf.urls.defaults import *
from myapp.api import EntryResource

entry_resource = EntryResource()

urlpatterns = patterns('',
 # The normal jazz here...
 (r'^blog/', include('myapp.urls')),
 (r'^api/', include(entry_resource.urls)),
)

Now it’s just a matter of firing up server (./manage.py runserver) and
going to http://127.0.0.1:8000/api/entry/?format=json. You should get back a
list of Entry-like objects.

Note

The ?format=json is an override required to make things look decent
in the browser (accept headers vary between browsers). Tastypie properly
handles the Accept header. So the following will work properly:

curl -H "Accept: application/json" http://127.0.0.1:8000/api/entry/

But if you’re sure you want something else (or want to test in a browser),
Tastypie lets you specify ?format=... when you really want to force
a certain type.

At this point, a bunch of other URLs are also available. Try out any/all of
the following (assuming you have at least three records in the database):

	http://127.0.0.1:8000/api/entry/?format=json

	http://127.0.0.1:8000/api/entry/1/?format=json

	http://127.0.0.1:8000/api/entry/schema/?format=json

	http://127.0.0.1:8000/api/entry/set/1;3/?format=json

With just seven lines of code, we have a full working REST interface to our
Entry model. In addition, full GET/POST/PUT/DELETE support is already
there, so it’s possible to really work with all of the data. Well, almost.

You see, you’ll note that not quite all of our data is there. Markedly absent
is the user field, which is a ForeignKey to Django’s User model.
Tastypie does NOT introspect related data because it has no way to know
how you want to represent that data.

And since that relation isn’t there, any attempt to POST/PUT new data will
fail, because no user is present, which is a required field on the model.

This is easy to fix, but we’ll need to flesh out out API a little more.

Creating More Resources

In order to handle our user relation, we’ll need to create a
UserResource and tell the EntryResource to use it. So we’ll modify
myapp/api.py to match the following code:

myapp/api.py
from django.contrib.auth.models import User
from tastypie import fields
from tastypie.resources import ModelResource
from myapp.models import Entry

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'

class EntryResource(ModelResource):
 user = fields.ForeignKey(UserResource, 'user')

 class Meta:
 queryset = Entry.objects.all()
 resource_name = 'entry'

We simply created a new ModelResource subclass
called UserResource. Then we added a field to EntryResource that
specified that the user field points to a UserResource for that data.

Now we should be able to get all of the fields back in our response. But since
we have another full, working resource on our hands, we should hook that up
to our API as well. And there’s a better way to do it.

Adding To The Api

Tastypie ships with an Api class, which lets you bind
multiple Resources together to form a
coherent API. Adding it to the mix is simple.

We’ll go back to our URLconf (urls.py) and change it to match the
following:

urls.py
from django.conf.urls.defaults import *
from tastypie.api import Api
from myapp.api import EntryResource, UserResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource())
v1_api.register(EntryResource())

urlpatterns = patterns('',
 # The normal jazz here...
 (r'^blog/', include('myapp.urls')),
 (r'^api/', include(v1_api.urls)),
)

Note that we’re now creating an Api instance,
registering our EntryResource and UserResource instances with it and
that we’ve modified the urls to now point to v1_api.urls.

This makes even more data accessible, so if we start up the runserver
again, the following URLs should work:

	http://127.0.0.1:8000/api/v1/?format=json

	http://127.0.0.1:8000/api/v1/user/?format=json

	http://127.0.0.1:8000/api/v1/user/1/?format=json

	http://127.0.0.1:8000/api/v1/user/schema/?format=json

	http://127.0.0.1:8000/api/v1/user/set/1;3/?format=json

	http://127.0.0.1:8000/api/v1/entry/?format=json

	http://127.0.0.1:8000/api/v1/entry/1/?format=json

	http://127.0.0.1:8000/api/v1/entry/schema/?format=json

	http://127.0.0.1:8000/api/v1/entry/set/1;3/?format=json

Additionally, the representations out of EntryResource will now include
the user field and point to an endpoint like /api/v1/users/1/ to access
that user’s data. And full POST/PUT delete support should now work.

But there’s several new problems. One is that our new UserResource leaks
too much data, including fields like email, password, is_active and
is_staff. Another is that we may not want to allow end users to alter
User data. Both of these problems are easily fixed as well.

Limiting Data And Access

Cutting out the email, password, is_active and is_staff fields
is easy to do. We simply modify our UserResource code to match the
following:

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'
 excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']

The excludes directive tells UserResource which fields not to include
in the output. If you’d rather whitelist fields, you could do:

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'
 fields = ['username', 'first_name', 'last_name', 'last_login']

Now that the undesirable fields are no longer included, we can look at limiting
access. This is also easy and involves making our UserResource look like:

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'
 excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']
 allowed_methods = ['get']

Now only HTTP GET requests will be allowed on /api/v1/user/ endpoints. If
you require more granular control, both list_allowed_methods and
detail_allowed_methods options are supported.

Beyond The Basics

We now have a full working API for our application. But Tastypie supports many
more features, like:

	Authentication / Authorization

	Caching

	Throttling

	Resources (filtering & sorting)

	Serialization

Tastypie is also very easy to override and extend. For some common patterns and
approaches, you should refer to the Tastypie Cookbook documentation.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Tastypie Settings

This is a comprehensive list of the settings Tastypie recognizes.

API_LIMIT_PER_PAGE

Optional

This setting controls what the default number of records Tastypie will show
in a list view is.

This is only used when a user does not specify a limit GET parameter and
the Resource subclass has not overridden the number to be shown.

An example:

API_LIMIT_PER_PAGE = 50

Defaults to 20.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Resources

In terms of a REST-style architecture, a “resource” is a collection of similar
data. This data could be a table of a database, a collection of other resources
or a similar form of data storage. In Tastypie, these resources are generally
intermediaries between the end user & objects, usually Django models. As such,
Resource (and its model-specific twin ModelResource) form the heart of
Tastypie’s functionality.

Quick Start

A sample resource definition might look something like:

from django.contrib.auth.models import User
from tastypie import fields
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource
from myapp.models import Entry

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']

class EntryResource(ModelResource):
 user = fields.ForeignKey(UserResource, 'user')

 class Meta:
 queryset = Entry.objects.all()
 list_allowed_methods = ['get', 'post']
 detail_allowed_methods = ['get', 'post', 'put', 'delete']
 resource_name = 'myapp/entry'
 authorization = DjangoAuthorization()
 filtering = {
 'slug': ALL,
 'user': ALL_WITH_RELATIONS,
 'created': ['exact', 'range', 'gt', 'gte', 'lt', 'lte'],
 }

Why Class-Based?

Using class-based resources make it easier to extend/modify the code to meet
your needs. APIs are rarely a one-size-fits-all problem space, so Tastypie
tries to get the fundamentals right and provide you with enough hooks to
customize things to work your way.

As is standard, this raises potential problems for thread-safety. Tastypie has
been designed to minimize the possibility of data “leaking” between threads.
This does however sometimes introduce some small complexities & you should be
careful not to store state on the instances if you’re going to be using the
code in a threaded environment.

Why Resource vs. ModelResource?

Make no mistake that Django models are far and away the most popular source of
data. However, in practice, there are many times where the ORM isn’t the data
source. Hooking up things like a NoSQL store, a search solution like Haystack
or even managed filesystem data are all good use cases for Resource knowing
nothing about the ORM.

Flow Through The Request/Response Cycle

TBD

What Are Bundles?

Bundles are a small abstraction that allow Tastypie to pass data between
resources. This allows us not to depend on passing request to every single
method (especially in places where this would be overkill). It also allows
resources to work with data coming into the application paired together with
an unsaved instance of the object in question.

Think of it as package of user data & an object instance (either of which are
optionally present).

Resource Options (AKA Meta)

The inner Meta class allows for class-level configuration of how the
Resource should behave. The following options are available:

serializer

Controls which serializer class the Resource should use. Default is
tastypie.serializers.Serializer().

authentication

Controls which authentication class the Resource should use. Default is
tastypie.authentication.Authentication().

authorization

Controls which authorization class the Resource should use. Default is
tastypie.authorization.ReadOnlyAuthorization().

cache

Controls which cache class the Resource should use. Default is
tastypie.cache.NoCache().

throttle

Controls which throttle class the Resource should use. Default is
tastypie.throttle.BaseThrottle().

allowed_methods

Controls what list & detail REST methods the Resource should respond to.
Default is None, which means delegate to the more specific
list_allowed_methods & detail_allowed_methods options.

You may specify a list like ['get', 'post', 'put', 'delete'] as a shortcut
to prevent having to specify the other options.

list_allowed_methods

Controls what list REST methods the Resource should respond to. Default
is ['get', 'post', 'put', 'delete'].

detail_allowed_methods

Controls what list REST methods the Resource should respond to. Default
is ['get', 'post', 'put', 'delete'].

limit

Controls what how many results the Resource will show at a time. Default
is either the API_LIMIT_PER_PAGE setting (if provided) or 20 if not
specified.

api_name

An override for the Resource to use when generating resource URLs.
Default is None.

resource_name

An override for the Resource to use when generating resource URLs.
Default is None.

If not provided, the Resource or ModelResource will attempt to name
itself. This means a lowercase version of the classname preceding the word
Resource if present (i.e. SampleContentResource would become
samplecontent).

default_format

Specifies the default serialization format the Resource should use if
one is not requested (usually by the Accept header or format GET
parameter). Default is application/json.

filtering

Provides a list of fields that the Resource will accept client
filtering on. Default is {}.

Keys should be the fieldnames as strings while values should be a list of
accepted filter types.

ordering

Specifies the default ordering the Resource should present the individual
resources in. Default is [].

Values should be the fieldnames as strings, with an optional preceding -
to control descending order.

object_class

Provides the Resource with the object that serves as the data source.
Default is None.

In the case of ModelResource, this is automatically populated by the
queryset option and is the model class.

queryset

Provides the Resource with the set of Django models to respond with.
Default is None.

Unused by Resource but present for consistency.

fields

Controls what introspected fields the Resource should include.
A whitelist of fields. Default is [].

excludes

Controls what introspected fields the Resource should NOT include.
A blacklist of fields. Default is [].

include_resource_uri

Specifies if the Resource should include an extra field that displays
the detail URL (within the api) for that resource. Default is True.

include_absolute_url

Specifies if the Resource should include an extra field that displays
the get_absolute_url for that object (on the site proper). Default is
False.

Basic Filtering

ModelResource provides a basic Django ORM filter
interface. Simply list the resource fields which you’d like to filter on and
the allowed expression in a filtering property of your resource’s Meta
class:

from tastypie.constants import ALL, ALL_WITH_RELATIONS

class MyResource(ModelResource):
 class Meta:
 filtering = {
 "slug": ('exact', 'startswith',),
 "title": ALL,
 }

Valid filtering values are: Django ORM filters (e.g. startswith,
exact, lte, etc. or the ALL or ALL_WITH_RELATIONS constants
defined in tastypie.constants.

These filters will be extracted from URL query strings using the same
double-underscore syntax as the Django ORM:

/api/v1/myresource/?slug=myslug
/api/v1/myresource/?slug__startswith=test

Advanced Filtering

If you need to filter things other than ORM resources or wish to apply
additional constraints (e.g. text filtering using django-haystack
<http://haystacksearch.org> rather than simple database queries) your
Resource may define a custom
build_filters() method which allows you to
filter the queryset before processing a request:

from haystack.query import SearchQuerySet

class MyResource(Resource):
 def build_filters(self, filters=None):
 if filters is None:
 filters = {}

 orm_filters = super(MyResource, self).build_filters(filters)

 if "q" in filters:
 sqs = SearchQuerySet().auto_query(filters['q'])

 orm_filters = {"pk__in": [i.pk for i in sqs]}

 return orm_filters

Resource Methods

Handles the data, request dispatch and responding to requests.

Serialization/deserialization is handled “at the edges” (i.e. at the
beginning/end of the request/response cycle) so that everything internally
is Python data structures.

This class tries to be non-model specific, so it can be hooked up to other
data sources, such as search results, files, other data, etc.

wrap_view

	
Resource.wrap_view(self, view):

	

Wraps methods so they can be called in a more functional way as well
as handling exceptions better.

Note that if BadRequest or an exception with a response attr are seen,
there is special handling to either present a message back to the user or
return the response traveling with the exception.

urls

	
Resource.urls(self):

	

Property

The endpoints this Resource responds to.

Mostly a standard URLconf, this is suitable for either automatic use
when registered with an Api class or for including directly in
a URLconf should you choose to.

determine_format

	
Resource.determine_format(self, request):

	

Used to determine the desired format.

Largely relies on tastypie.utils.mime.determine_format but here
as a point of extension.

serialize

	
Resource.serialize(self, request, data, format, options=None):

	

Given a request, data and a desired format, produces a serialized
version suitable for transfer over the wire.

Mostly a hook, this uses the Serializer from Resource._meta.

deserialize

	
Resource.deserialize(self, request, data, format='application/json'):

	

Given a request, data and a format, deserializes the given data.

It relies on the request properly sending a CONTENT_TYPE header,
falling back to application/json if not provided.

Mostly a hook, this uses the Serializer from Resource._meta.

dispatch_list

	
Resource.dispatch_list(self, request, **kwargs):

	

A view for handling the various HTTP methods (GET/POST/PUT/DELETE) over
the entire list of resources.

Relies on Resource.dispatch for the heavy-lifting.

dispatch_detail

	
Resource.dispatch_detail(self, request, **kwargs):

	

A view for handling the various HTTP methods (GET/POST/PUT/DELETE) on
a single resource.

Relies on Resource.dispatch for the heavy-lifting.

dispatch

	
Resource.dispatch(self, request_type, request, **kwargs):

	

Handles the common operations (allowed HTTP method, authentication,
throttling, method lookup) surrounding most CRUD interactions.

remove_api_resource_names

	
Resource.remove_api_resource_names(self, url_dict):

	

Given a dictionary of regex matches from a URLconf, removes
api_name and/or resource_name if found.

This is useful for converting URLconf matches into something suitable
for data lookup. For example:

Model.objects.filter(**self.remove_api_resource_names(matches))

method_check

	
Resource.method_check(self, request, allowed=None):

	

Ensures that the HTTP method used on the request is allowed to be
handled by the resource.

Takes an allowed parameter, which should be a list of lowercase
HTTP methods to check against. Usually, this looks like:

The most generic lookup.
self.method_check(request, self._meta.allowed_methods)

A lookup against what's allowed for list-type methods.
self.method_check(request, self._meta.list_allowed_methods)

A useful check when creating a new endpoint that only handles
GET.
self.method_check(request, ['get'])

is_authorized

	
Resource.is_authorized(self, request, object=None):

	

Handles checking of permissions to see if the user has authorization
to GET, POST, PUT, or DELETE this resource. If object is provided,
the authorization backend can apply additional row-level permissions
checking.

is_authenticated

	
Resource.is_authenticated(self, request):

	

Handles checking if the user is authenticated and dealing with
unauthenticated users.

Mostly a hook, this uses class assigned to authentication from
Resource._meta.

throttle_check

	
Resource.throttle_check(self, request):

	

Handles checking if the user should be throttled.

Mostly a hook, this uses class assigned to throttle from
Resource._meta.

log_throttled_access

	
Resource.log_throttled_access(self, request):

	

Handles the recording of the user’s access for throttling purposes.

Mostly a hook, this uses class assigned to throttle from
Resource._meta.

build_bundle

	
Resource.build_bundle(self, obj=None, data=None):

	

Given either an object, a data dictionary or both, builds a Bundle
for use throughout the dehydrate/hydrate cycle.

If no object is provided, an empty object from
Resource._meta.object_class is created so that attempts to access
bundle.obj do not fail.

build_filters

	
Resource.build_filters(self, filters=None):

	

Allows for the filtering of applicable objects.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

apply_sorting

	
Resource.apply_sorting(self, obj_list, options=None):

	

Allows for the sorting of objects being returned.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

get_resource_uri

	
Resource.get_resource_uri(self, bundle_or_obj):

	

This needs to be implemented at the user level.

A return reverse("api_dispatch_detail", kwargs={'resource_name':
self.resource_name, 'pk': object.id}) should be all that would
be needed.

ModelResource includes a full working version specific to Django’s
Models.

get_resource_list_uri

	
Resource.get_resource_list_uri(self):

	

Returns a URL specific to this resource’s list endpoint.

get_via_uri

	
Resource.get_via_uri(self, uri):

	

This pulls apart the salient bits of the URI and populates the
resource via a obj_get.

If you need custom behavior based on other portions of the URI,
simply override this method.

full_dehydrate

	
Resource.full_dehydrate(self, obj):

	

Given an object instance, extract the information from it to populate
the resource.

dehydrate

	
Resource.dehydrate(self, bundle):

	

A hook to allow a final manipulation of data once all fields/methods
have built out the dehydrated data.

Useful if you need to access more than one dehydrated field or want
to annotate on additional data.

Must return the modified bundle.

full_hydrate

	
Resource.full_hydrate(self, bundle):

	

Given a populated bundle, distill it and turn it back into
a full-fledged object instance.

hydrate

	
Resource.hydrate(self, bundle):

	

A hook to allow a final manipulation of data once all fields/methods
have built out the hydrated data.

Useful if you need to access more than one hydrated field or want
to annotate on additional data.

Must return the modified bundle.

hydrate_m2m

	
Resource.hydrate_m2m(self, bundle):

	

Populate the ManyToMany data on the instance.

build_schema

	
Resource.build_schema(self):

	

Returns a dictionary of all the fields on the resource and some
properties about those fields.

Used by the schema/ endpoint to describe what will be available.

dehydrate_resource_uri

	
Resource.dehydrate_resource_uri(self, bundle):

	

For the automatically included resource_uri field, dehydrate
the URI for the given bundle.

Returns empty string if no URI can be generated.

generate_cache_key

	
Resource.generate_cache_key(self, *args, **kwargs):

	

Creates a unique-enough cache key.

This is based off the current api_name/resource_name/args/kwargs.

obj_get_list

	
Resource.obj_get_list(self, filters=None, **kwargs):

	

Fetches the list of objects available on the resource.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

cached_obj_get_list

	
Resource.cached_obj_get_list(self, **kwargs):

	

A version of obj_get_list that uses the cache as a means to get
commonly-accessed data faster.

obj_get

	
Resource.obj_get(self, **kwargs):

	

Fetches an individual object on the resource.

This needs to be implemented at the user level. If the object can not
be found, this should raise a NotFound exception.

ModelResource includes a full working version specific to Django’s
Models.

cached_obj_get

	
Resource.cached_obj_get(self, **kwargs):

	

A version of obj_get that uses the cache as a means to get
commonly-accessed data faster.

obj_create

	
Resource.obj_create(self, bundle, **kwargs):

	

Creates a new object based on the provided data.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

obj_update

	
Resource.obj_update(self, bundle, **kwargs):

	

Updates an existing object (or creates a new object) based on the
provided data.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

obj_delete_list

	
Resource.obj_delete_list(self, **kwargs):

	

Deletes an entire list of objects.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

obj_delete

	
Resource.obj_delete(self, **kwargs):

	

Deletes a single object.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

create_response

	
Resource.create_response(self, request, data):

	

Extracts the common “which-format/serialize/return-response” cycle.

Mostly a useful shortcut/hook.

get_list

	
Resource.get_list(self, request, **kwargs):

	

Returns a serialized list of resources.

Calls obj_get_list to provide the data, then handles that result
set and serializes it.

Should return a HttpResponse (200 OK).

get_detail

	
Resource.get_detail(self, request, **kwargs):

	

Returns a single serialized resource.

Calls cached_obj_get/obj_get to provide the data, then handles that result
set and serializes it.

Should return a HttpResponse (200 OK).

put_list

	
Resource.put_list(self, request, **kwargs):

	

Replaces a collection of resources with another collection.

Calls delete_list to clear out the collection then obj_create
with the provided the data to create the new collection.

Return HttpAccepted (204 No Content).

put_detail

	
Resource.put_detail(self, request, **kwargs):

	

Either updates an existing resource or creates a new one with the
provided data.

Calls obj_update with the provided data first, but falls back to
obj_create if the object does not already exist.

If a new resource is created, return HttpCreated (201 Created).
If an existing resource is modified, return HttpAccepted (204 No Content).

post_list

	
Resource.post_list(self, request, **kwargs):

	

Creates a new resource/object with the provided data.

Calls obj_create with the provided data and returns a response
with the new resource’s location.

If a new resource is created, return HttpCreated (201 Created).

post_detail

	
Resource.post_detail(self, request, **kwargs):

	

Creates a new subcollection of the resource under a resource.

This is not implemented by default because most people’s data models
aren’t self-referential.

If a new resource is created, return HttpCreated (201 Created).

delete_list

	
Resource.delete_list(self, request, **kwargs):

	

Destroys a collection of resources/objects.

Calls obj_delete_list.

If the resources are deleted, return HttpAccepted (204 No Content).

delete_detail

	
Resource.delete_detail(self, request, **kwargs):

	

Destroys a single resource/object.

Calls obj_delete.

If the resource is deleted, return HttpAccepted (204 No Content).
If the resource did not exist, return HttpGone (410 Gone).

get_schema

	
Resource.get_schema(self, request, **kwargs):

	

Returns a serialized form of the schema of the resource.

Calls build_schema to generate the data. This method only responds
to HTTP GET.

Should return a HttpResponse (200 OK).

get_multiple

	
Resource.get_multiple(self, request, **kwargs):

	

Returns a serialized list of resources based on the identifiers
from the URL.

Calls obj_get to fetch only the objects requested. This method
only responds to HTTP GET.

Should return a HttpResponse (200 OK).

ModelResource Methods

A subclass of Resource designed to work with Django’s Models.

This class will introspect a given Model and build a field list based
on the fields found on the model (excluding relational fields).

Given that it is aware of Django’s ORM, it also handles the CRUD data
operations of the resource.

should_skip_field

	
Resource.should_skip_field(cls, field):

	

Class method

Given a Django model field, return if it should be included in the
contributed ApiFields.

api_field_from_django_field

	
Resource.api_field_from_django_field(cls, f, default=CharField):

	

Class method

Returns the field type that would likely be associated with each
Django type.

get_fields

	
Resource.get_fields(cls, fields=None, excludes=None):

	

Class method

Given any explicit fields to include and fields to exclude, add
additional fields based on the associated model.

build_filters

	
Resource.build_filters(self, filters=None):

	

Given a dictionary of filters, create the necessary ORM-level filters.

Keys should be resource fields, NOT model fields.

Valid values are either a list of Django filter types (i.e.
['startswith', 'exact', 'lte']), the ALL constant or the
ALL_WITH_RELATIONS constant.

At the declarative level:

filtering = {
 'resource_field_name': ['exact', 'startswith', 'endswith', 'contains'],
 'resource_field_name_2': ['exact', 'gt', 'gte', 'lt', 'lte', 'range'],
 'resource_field_name_3': ALL,
 'resource_field_name_4': ALL_WITH_RELATIONS,
 ...
}

Accepts the filters as a dict. None by default, meaning no filters.

apply_sorting

	
Resource.apply_sorting(self, obj_list, options=None):

	

Given a dictionary of options, apply some ORM-level sorting to the
provided QuerySet.

Looks for the sort_by key and handles either ascending (just the
field name) or descending (the field name with a - in front).

The field name should be the resource field, NOT model field.

obj_get_list

	
Resource.obj_get_list(self, filters=None, **kwargs):

	

A ORM-specific implementation of obj_get_list.

Takes an optional filters dictionary, which can be used to narrow
the query.

obj_get

	
Resource.obj_get(self, **kwargs):

	

A ORM-specific implementation of obj_get.

Takes optional kwargs, which are used to narrow the query to find
the instance.

obj_create

	
Resource.obj_create(self, bundle, **kwargs):

	

A ORM-specific implementation of obj_create.

obj_update

	
Resource.obj_update(self, bundle, **kwargs):

	

A ORM-specific implementation of obj_update.

obj_delete_list

	
Resource.obj_delete_list(self, **kwargs):

	

A ORM-specific implementation of obj_delete_list.

Takes optional kwargs, which can be used to narrow the query.

obj_delete

	
Resource.obj_delete(self, **kwargs):

	

A ORM-specific implementation of obj_delete.

Takes optional kwargs, which are used to narrow the query to find
the instance.

save_m2m

	
Resource.save_m2m(self, bundle):

	

Handles the saving of related M2M data.

Due to the way Django works, the M2M data must be handled after the
main instance, which is why this isn’t a part of the main save bits.

Currently slightly inefficient in that it will clear out the whole
relation and recreate the related data as needed.

get_resource_uri

	
Resource.get_resource_uri(self, bundle_or_obj):

	

Handles generating a resource URI for a single resource.

Uses the model’s pk in order to create the URI.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Api

In terms of a REST-style architecture, the “api” is a collection of resources.
In Tastypie, the Api gathers together the Resources & provides a nice
way to use them as a set. It handles many of the URLconf details for you,
provides a helpful “top-level” view to show what endpoints are available &
some extra URL resolution juice.

Quick Start

A sample api definition might look something like (usually located in a
URLconf):

from tastypie.api import Api
from myapp.api.resources import UserResource, EntryResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource)
v1_api.register(EntryResource)

Standard bits...
urlpatterns = patterns('',
 (r'^api/', include(v1_api.urls)),
)

Api Methods

Implements a registry to tie together the various resources that make up
an API.

Especially useful for navigation, HATEOAS and for providing multiple
versions of your API.

Optionally supplying api_name allows you to name the API. Generally,
this is done with version numbers (i.e. v1, v2, etc.) but can
be named any string.

register

	
Api.register(self, resource, canonical=True):

	

Registers a Resource subclass with the API.

Optionally accept a canonical argument, which indicates that the
resource being registered is the canonical variant. Defaults to
True.

unregister

	
Api.unregister(self, resource_name):

	

If present, unregisters a resource from the API.

canonical_resource_for

	
Api.canonical_resource_for(self, resource_name):

	

Returns the canonical resource for a given resource_name.

urls

	
Api.urls(self):

	

Property

Provides URLconf details for the Api and all registered
Resources beneath it.

top_level

	
Api.top_level(self, request, api_name=None):

	

A view that returns a serialized list of all resources registers
to the Api. Useful for discovery.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Caching

When adding an API to your site, it’s important to understand that most
consumers of the API will not be people, but instead machines. This means that
the traditional “fetch-read-click” cycle is no longer measured in minutes but
in seconds or milliseconds.

As such, caching is a very important part of the deployment of your API.
Tastypie ships with two classes to make working with caching easier. These
caches store at the object level, reducing access time on the database.

However, it’s worth noting that these do NOT cache serialized representations.
For heavy traffic, we’d encourage the use of a caching proxy, especially
Varnish [http://www.varnish-cache.org/], as it shines under this kind of usage. It’s far faster than Django
views and already neatly handles most situations.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.cache import SimpleCache
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 cache = SimpleCache()

Caching Options

Tastypie ships with the following Cache classes:

NoCache

The no-op cache option, this does no caching but serves as an api-compatible
plug. Very useful for development.

SimpleCache

This option does basic object caching, attempting to find the object in the
cache & writing the object to the cache. It uses Django’s current
CACHE_BACKEND to store cached data.

Implementing Your Own Cache

Implementing your own Cache class is as simple as subclassing NoCache
and overriding the get & set methods. For example, a json-backed
cache might look like:

import json
from django.conf import settings
from tastypie.cache import NoCache

class JSONCache(NoCache):
 def _load(self):
 data_file = open(settings.TASTYPIE_JSON_CACHE, 'r')
 return json.load(data_file)

 def _save(self, data):
 data_file = open(settings.TASTYPIE_JSON_CACHE, 'w')
 return json.dump(data, data_file)

 def get(self, key):
 data = self._load()
 return data.get(key, None)

 def set(self, key, value, timeout=60):
 data = self._load()
 data[key] = value
 self._save(data)

Note that this is NOT necessarily an optimal solution, but is simply
demonstrating how one might go about implementing your own Cache.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Authentication / Authorization

Authentication & authorization make up the components needed to verify that
a certain user has access to the API and what they can do with it.

Authentication answers the question “can they see this data?” This usually
involves requiring credentials, such as an API key or username/password.

Authorization answers the question “what objects can they modify?” This usually
involves checking permissions, but is open to other implementations.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.authentication import BasicAuthentication
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 authentication = BasicAuthentication()
 authorization = DjangoAuthorization()

Authentication Options

Tastypie ships with the following Authentication classes:

Authentication

The no-op authentication option, the client is always allowed through. Very
useful for development and read-only APIs.

BasicAuthentication

This authentication scheme uses HTTP Basic Auth to check a user’s credentials.
The username is their django.contrib.auth.models.User username (assuming
it is present) and their password should also correspond to that entry.

ApiKeyAuthentication

As an alternative to requiring sensitive data like a password, the
ApiKeyAuthentication allows you to collect just username & a
machine-generated api key. Tastypie ships with a special Model just for
this purpose, so you’ll need to ensure tastypie is in INSTALLED_APPS.

Authorization Options

Tastypie ships with the following Authorization classes:

Authorization

The no-op authorization option, no permissions checks are performed.

Warning

This is a potentially dangerous option, as it means ANY recognized user
can modify ANY data they encounter in the API. Be careful who you trust.

ReadOnlyAuthorization

This authorization class only permits reading data, regardless of what the
Resource might think is allowed. This is the default Authorization
class and the safe option.

DjangoAuthorization

The most advanced form of authorization, this checks the permission a user
has granted to them (via django.contrib.auth.models.Permission). In
conjunction with the admin, this is a very effective means of control.

Implementing Your Own Authentication/Authorization

Implementing your own Authentication/Authorization classes is a simple
process. Authentication has two methods to override (one of which is
optional but recommended to be customized) and Authorization has just one
required method:

from tastypie.authentication import Authentication
from tastypie.authorization import Authorization

class SillyAuthentication(NoCache):
 def is_authenticated(self, request, **kwargs):
 if 'daniel' in request.user.username:
 return True

 return False

 # Optional but recommended
 def get_identifier(self, request):
 return request.user.username

class SillyAuthorization(Authorization):
 def is_authorized(self, request, object=None):
 if request.user.date_joined.year == 2010:
 return True
 else:
 return False

Under this scheme, only users with ‘daniel’ in their username will be allowed
in, and only those who joined the site in 2010 will be allowed to affect data.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Serialization

Serialization can be one of the most contentious areas of an API. Everyone
has their own requirements, their own preferred output format & the desire to
have control over what is returned.

As a result, Tastypie ships with a serializer that tries to meet the basic
needs of most use cases, and the flexibility to go outside of that when you
need to.

The default Serializer supports the following formats:

	json

	jsonp

	xml

	yaml

	html

Usage

Using this class is simple. It is the default option on all Resource
classes unless otherwise specified. The following code is a no-op, but
demonstrate how you could use your own serializer:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 serializer = Serializer()

Implementing Your Own Serializer

There are several different use cases here. We’ll cover simple examples of
wanting a tweaked format & adding a different format.

To tweak a format, simply override it’s to_<format> & from_<format>
methods. So adding the server time to all output might look like so:

import time
from tastypie.serializers import Serializer

class CustomJSONSerializer(Serializer):
 def to_json(self, data, options=None):
 options = options or {}

 # Add in the current time.
 data['requested_time'] = time.time()

 data = self.to_simple(data, options)
 return simplejson.dumps(data, cls=json.DjangoJSONEncoder, sort_keys=True)

 def from_json(self, content):
 data = simplejson.loads(content)

 if 'requested_time' in data:
 # Log the request here...
 pass

 return data

In the case of adding a different format, let’s say you want to add a CSV
output option to the existing set. Your Serializer subclass might look
like:

import csv
import StringIO
from tastypie.serializers import Serializer

class CSVSerializer(Serializer):
 formats = ['json', 'jsonp', 'xml', 'yaml', 'html', 'csv']
 content_types = {
 'json': 'application/json',
 'jsonp': 'text/javascript',
 'xml': 'application/xml',
 'yaml': 'text/yaml',
 'html': 'text/html',
 'csv': 'text/csv',
 }

 def to_csv(self, data, options=None):
 options = options or {}
 data = self.to_simple(data, options)
 raw_data = StringIO.StringIO()
 # Untested, so this might not work exactly right.
 for item in data:
 writer = csv.DictWriter(raw_data, item.keys(), extrasaction='ignore')
 writer.write(item)
 return raw_data

 def from_csv(self, content):
 raw_data = StringIO.StringIO(content)
 data = []
 # Untested, so this might not work exactly right.
 for item in csv.DictReader(raw_data):
 data.append(item)
 return data

Serializer Methods

A swappable class for serialization.

This handles most types of data as well as the following output formats:

* json
* jsonp
* xml
* yaml
* html

It was designed to make changing behavior easy, either by overridding the
various format methods (i.e. to_json), by changing the
formats/content_types options or by altering the other hook methods.

get_mime_for_format

	
Serializer.get_mime_for_format(self, format):

	

Given a format, attempts to determine the correct MIME type.

If not available on the current Serializer, returns
application/json by default.

serialize

	
Serializer.serialize(self, bundle, format='application/json', options={}):

	

Given some data and a format, calls the correct method to serialize
the data and returns the result.

deserialize

	
Serializer.deserialize(self, content, format='application/json'):

	

Given some data and a format, calls the correct method to deserialize
the data and returns the result.

to_simple

	
Serializer.to_simple(self, data, options):

	

For a piece of data, attempts to recognize it and provide a simplified
form of something complex.

This brings complex Python data structures down to native types of the
serialization format(s).

to_etree

	
Serializer.to_etree(self, data, options=None, name=None, depth=0):

	

Given some data, converts that data to an etree.Element suitable
for use in the XML output.

from_etree

	
Serializer.from_etree(self, data):

	

Not the smartest deserializer on the planet. At the request level,
it first tries to output the deserialized subelement called “object”
or “objects” and falls back to deserializing based on hinted types in
the XML element attribute “type”.

to_json

	
Serializer.to_json(self, data, options=None):

	

Given some Python data, produces JSON output.

from_json

	
Serializer.from_json(self, content):

	

Given some JSON data, returns a Python dictionary of the decoded data.

to_jsonp

	
Serializer.to_jsonp(self, data, options=None):

	

Given some Python data, produces JSON output wrapped in the provided
callback.

to_xml

	
Serializer.to_xml(self, data, options=None):

	

Given some Python data, produces XML output.

from_xml

	
Serializer.from_xml(self, content):

	

Given some XML data, returns a Python dictionary of the decoded data.

to_yaml

	
Serializer.to_yaml(self, data, options=None):

	

Given some Python data, produces YAML output.

from_yaml

	
Serializer.from_yaml(self, content):

	

Given some YAML data, returns a Python dictionary of the decoded data.

to_html

	
Serializer.to_html(self, data, options=None):

	

Reserved for future usage.

The desire is to provide HTML output of a resource, making an API
available to a browser. This is on the TODO list but not currently
implemented.

from_html

	
Serializer.from_html(self, content):

	

Reserved for future usage.

The desire is to handle form-based (maybe Javascript?) input, making an
API available to a browser. This is on the TODO list but not currently
implemented.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Throttling

Sometimes, the client on the other end may request data too frequently or
you have a business use case that dictates that the client should be limited
to a certain number of requests per hour.

For this, Tastypie includes throttling as a way to limit the number of requests
in a timeframe.

Usage

To specify a throttle, add the Throttle class to the Meta class on the
Resource:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.throttle import BaseThrottle

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 throttle = BaseThrottle(throttle_at=100)

Throttle Options

Each of the Throttle classes accepts the following initialization
arguments:

	throttle_at - the number of requests at which the user should
be throttled. Default is 150 requests.

	timeframe - the length of time (in seconds) in which the user
make up to the throttle_at requests. Default is 3600 seconds (
1 hour).

	expiration - the length of time to retain the times the user
has accessed the api in the cache. Default is 604800 (1 week).

Tastypie ships with the following Throttle classes:

BaseThrottle

The no-op throttle option, this does no throttling but implements much of the
common logic and serves as an api-compatible plug. Very useful for development.

CacheThrottle

This uses just the cache to manage throttling. Fast but prone to cache misses
and/or cache restarts.

CacheDBThrottle

A write-through option that uses the cache first & foremost, but also writes
through to the database to persist access times. Useful for logging client
accesses & with RAM-only caches.

Implementing Your Own Throttle

Writing a Throttle class is not quite as simple as the other components.
There are two important methods, should_be_throttled & accessed. The
should_be_throttled method dictates whether or not the client should be
throttled. The accessed method allows for the recording of the hit to the
API.

An example of a subclass might be:

import random
from tastypie.throttle import BaseThrottle

class RandomThrottle(BaseThrottle):
 def should_be_throttled(self, identifier, **kwargs):
 if random.randint(0, 10) % 2 == 0:
 return True

 return False

 def accessed(self, identifier, **kwargs):
 pass

This throttle class would pick a random number between 0 & 10. If the number is
even, their request is allowed through; otherwise, their request is throttled &
rejected.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Tastypie Cookbook

Adding Custom Values

You might encounter cases where you wish to include additional data in a
response which is not obtained from a field or method on your model. You can
easily extend the dehydrate() method to
provide additional values:

class MyModelResource(Resource):
 class Meta:
 qs = MyModel.objects.all()

 def dehydrate(self, bundle):
 bundle.data['custom_field'] = "Whatever you want"
 return bundle

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Sites Using Tastypie

The following sites are a partial list of people using Tastypie. I’m always
interested in adding more sites, so please find me (daniellindsley) via
IRC or start a mailing list thread.

LJWorld Marketplace

	http://www2.ljworld.com/marketplace/api/v1/?format=json

Forkinit

	http://forkinit.com/api/v1/?format=json

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Getting Started with Tastypie

Tastypie is a reusable app (that is, it relies only on it’s own code and
focuses on providing just a REST-style API) and is suitable for providing an
API to any application without having to modify the sources of that app.

Not everyone’s needs are the same, so Tastypie goes out of it’s way to provide
plenty of hooks for overridding or extending how it works.

Note

If you hit a stumbling block, you can join
#tastypie on irc.freenode.net to get help.

This tutorial assumes that you have a basic understand of Django as well as
how proper REST-style APIs ought to work. We will only explain the portions
of the code that are Tastypie-specific in any kind of depth.

For example purposes, we’ll be adding an API to a simple blog application.
Here is myapp/models.py:

import datetime
from django.contrib.auth.models import User
from django.db import models
from django.template.defaultfilters import slugify

class Entry(models.Model):
 user = models.ForeignKey(User)
 pub_date = models.DateTimeField(default=datetime.datetime.now)
 title = models.CharField(max_length=200)
 slug = models.SlugField
 body = models.TextField()

 def __unicode__(self):
 return self.title

 def save(self, *args, **kwargs):
 # For automatic slug generation.
 if not self.slug:
 self.slug = slugify(self.title)[:50]

 return super(Entry, self).save(*args, **kwargs)

With that, we’ll move on to installing and configuring Tastypie.

Installation

Installing Tastypie is as simple as checking out the source and adding it to
your project or PYTHONPATH.

	Download the dependencies:

	Python 2.4+

	Django 1.0+ (tested on Django 1.1+)

	mimeparse 0.1.3+ (http://code.google.com/p/mimeparse/)
	Older versions will work, but their behavior on JSON/JSONP is a touch wonky.

	dateutil (http://labix.org/python-dateutil)

	OPTIONAL - lxml (http://codespeak.net/lxml/) if using the XML serializer

	OPTIONAL - pyyaml (http://pyyaml.org/) if using the YAML serializer

	OPTIONAL - uuid (present in 2.5+, downloadable from
http://pypi.python.org/pypi/uuid/) if using the ApiKey authentication

	Check out tastypie from GitHub [http://github.com/toastdriven/django-tastypie].

	Either symlink the tastypie directory into your project or copy the
directory in. What ever works best for you.

Note

Once tastypie passes version 1.0, it will become officially available on
PyPI [http://pypi.python.org/]. Once that is the case, a sudo pip install tastypie or sudo
easy_install tastypie should be available.

Configuration

The only mandatory configuration is adding 'tastypie' to your
INSTALLED_APPS. This isn’t strictly necessary, as Tastypie has only one
non-required model, but may ease usage.

You have the option to set up a number of settings (see Tastypie Settings) but
most have sane defaults and are not required unless you need to tweak their
values.

Creating Resources

REST-style architecture talks about resources, so unsurprisingly integrating
with Tastypie involves creating Resource classes.
For our simple application, we’ll create a file for these in myapp/api.py,
though they can live anywhere in your application:

myapp/api.py
from tastypie.resources import ModelResource
from myapp.models import Entry

class EntryResource(ModelResource):
 class Meta:
 queryset = Entry.objects.all()
 resource_name = 'entry'

This class, by virtue of being a ModelResource
subclass, will introspect all non-relational fields on the Entry model and
create it’s own ApiFields that map to those fields,
much like the way Django’s ModelForm class introspects.

Note

The resource_name within the Meta class is optional. If not
provided, it is automatically generated off the classname, removing any
instances of Resource and lowercasing the string. So
EntryResource would become just entry.

It’s included in this example for clarity, especially when looking at
the URLs, but you may feel free to omit it if you’re comfortable with
this behavior.

Hooking Up The Resource(s)

Now that we have our EntryResource, we can hook it up in our URLconf. To
do this, we simply instantiate the resource in our URLconf and hook up its
urls:

urls.py
from django.conf.urls.defaults import *
from myapp.api import EntryResource

entry_resource = EntryResource()

urlpatterns = patterns('',
 # The normal jazz here...
 (r'^blog/', include('myapp.urls')),
 (r'^api/', include(entry_resource.urls)),
)

Now it’s just a matter of firing up server (./manage.py runserver) and
going to http://127.0.0.1:8000/api/entry/?format=json. You should get back a
list of Entry-like objects.

Note

The ?format=json is an override required to make things look decent
in the browser (accept headers vary between browsers). Tastypie properly
handles the Accept header. So the following will work properly:

curl -H "Accept: application/json" http://127.0.0.1:8000/api/entry/

But if you’re sure you want something else (or want to test in a browser),
Tastypie lets you specify ?format=... when you really want to force
a certain type.

At this point, a bunch of other URLs are also available. Try out any/all of
the following (assuming you have at least three records in the database):

	http://127.0.0.1:8000/api/entry/?format=json

	http://127.0.0.1:8000/api/entry/1/?format=json

	http://127.0.0.1:8000/api/entry/schema/?format=json

	http://127.0.0.1:8000/api/entry/set/1;3/?format=json

With just seven lines of code, we have a full working REST interface to our
Entry model. In addition, full GET/POST/PUT/DELETE support is already
there, so it’s possible to really work with all of the data. Well, almost.

You see, you’ll note that not quite all of our data is there. Markedly absent
is the user field, which is a ForeignKey to Django’s User model.
Tastypie does NOT introspect related data because it has no way to know
how you want to represent that data.

And since that relation isn’t there, any attempt to POST/PUT new data will
fail, because no user is present, which is a required field on the model.

This is easy to fix, but we’ll need to flesh out out API a little more.

Creating More Resources

In order to handle our user relation, we’ll need to create a
UserResource and tell the EntryResource to use it. So we’ll modify
myapp/api.py to match the following code:

myapp/api.py
from django.contrib.auth.models import User
from tastypie import fields
from tastypie.resources import ModelResource
from myapp.models import Entry

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'

class EntryResource(ModelResource):
 user = fields.ForeignKey(UserResource, 'user')

 class Meta:
 queryset = Entry.objects.all()
 resource_name = 'entry'

We simply created a new ModelResource subclass
called UserResource. Then we added a field to EntryResource that
specified that the user field points to a UserResource for that data.

Now we should be able to get all of the fields back in our response. But since
we have another full, working resource on our hands, we should hook that up
to our API as well. And there’s a better way to do it.

Adding To The Api

Tastypie ships with an Api class, which lets you bind
multiple Resources together to form a
coherent API. Adding it to the mix is simple.

We’ll go back to our URLconf (urls.py) and change it to match the
following:

urls.py
from django.conf.urls.defaults import *
from tastypie.api import Api
from myapp.api import EntryResource, UserResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource())
v1_api.register(EntryResource())

urlpatterns = patterns('',
 # The normal jazz here...
 (r'^blog/', include('myapp.urls')),
 (r'^api/', include(v1_api.urls)),
)

Note that we’re now creating an Api instance,
registering our EntryResource and UserResource instances with it and
that we’ve modified the urls to now point to v1_api.urls.

This makes even more data accessible, so if we start up the runserver
again, the following URLs should work:

	http://127.0.0.1:8000/api/v1/?format=json

	http://127.0.0.1:8000/api/v1/user/?format=json

	http://127.0.0.1:8000/api/v1/user/1/?format=json

	http://127.0.0.1:8000/api/v1/user/schema/?format=json

	http://127.0.0.1:8000/api/v1/user/set/1;3/?format=json

	http://127.0.0.1:8000/api/v1/entry/?format=json

	http://127.0.0.1:8000/api/v1/entry/1/?format=json

	http://127.0.0.1:8000/api/v1/entry/schema/?format=json

	http://127.0.0.1:8000/api/v1/entry/set/1;3/?format=json

Additionally, the representations out of EntryResource will now include
the user field and point to an endpoint like /api/v1/users/1/ to access
that user’s data. And full POST/PUT delete support should now work.

But there’s several new problems. One is that our new UserResource leaks
too much data, including fields like email, password, is_active and
is_staff. Another is that we may not want to allow end users to alter
User data. Both of these problems are easily fixed as well.

Limiting Data And Access

Cutting out the email, password, is_active and is_staff fields
is easy to do. We simply modify our UserResource code to match the
following:

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'
 excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']

The excludes directive tells UserResource which fields not to include
in the output. If you’d rather whitelist fields, you could do:

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'
 fields = ['username', 'first_name', 'last_name', 'last_login']

Now that the undesirable fields are no longer included, we can look at limiting
access. This is also easy and involves making our UserResource look like:

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'
 excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']
 allowed_methods = ['get']

Now only HTTP GET requests will be allowed on /api/v1/user/ endpoints. If
you require more granular control, both list_allowed_methods and
detail_allowed_methods options are supported.

Beyond The Basics

We now have a full working API for our application. But Tastypie supports many
more features, like:

	Authentication / Authorization

	Caching

	Throttling

	Resources (filtering & sorting)

	Serialization

Tastypie is also very easy to override and extend. For some common patterns and
approaches, you should refer to the Tastypie Cookbook documentation.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Tastypie Settings

This is a comprehensive list of the settings Tastypie recognizes.

API_LIMIT_PER_PAGE

Optional

This setting controls what the default number of records Tastypie will show
in a list view is.

This is only used when a user does not specify a limit GET parameter and
the Resource subclass has not overridden the number to be shown.

An example:

API_LIMIT_PER_PAGE = 50

Defaults to 20.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Resources

In terms of a REST-style architecture, a “resource” is a collection of similar
data. This data could be a table of a database, a collection of other resources
or a similar form of data storage. In Tastypie, these resources are generally
intermediaries between the end user & objects, usually Django models. As such,
Resource (and its model-specific twin ModelResource) form the heart of
Tastypie’s functionality.

Quick Start

A sample resource definition might look something like:

from django.contrib.auth.models import User
from tastypie import fields
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource
from myapp.models import Entry

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']

class EntryResource(ModelResource):
 user = fields.ForeignKey(UserResource, 'user')

 class Meta:
 queryset = Entry.objects.all()
 list_allowed_methods = ['get', 'post']
 detail_allowed_methods = ['get', 'post', 'put', 'delete']
 resource_name = 'myapp/entry'
 authorization = DjangoAuthorization()
 filtering = {
 'slug': ALL,
 'user': ALL_WITH_RELATIONS,
 'created': ['exact', 'range', 'gt', 'gte', 'lt', 'lte'],
 }

Why Class-Based?

Using class-based resources make it easier to extend/modify the code to meet
your needs. APIs are rarely a one-size-fits-all problem space, so Tastypie
tries to get the fundamentals right and provide you with enough hooks to
customize things to work your way.

As is standard, this raises potential problems for thread-safety. Tastypie has
been designed to minimize the possibility of data “leaking” between threads.
This does however sometimes introduce some small complexities & you should be
careful not to store state on the instances if you’re going to be using the
code in a threaded environment.

Why Resource vs. ModelResource?

Make no mistake that Django models are far and away the most popular source of
data. However, in practice, there are many times where the ORM isn’t the data
source. Hooking up things like a NoSQL store, a search solution like Haystack
or even managed filesystem data are all good use cases for Resource knowing
nothing about the ORM.

Flow Through The Request/Response Cycle

TBD

What Are Bundles?

Bundles are a small abstraction that allow Tastypie to pass data between
resources. This allows us not to depend on passing request to every single
method (especially in places where this would be overkill). It also allows
resources to work with data coming into the application paired together with
an unsaved instance of the object in question.

Think of it as package of user data & an object instance (either of which are
optionally present).

Resource Options (AKA Meta)

The inner Meta class allows for class-level configuration of how the
Resource should behave. The following options are available:

serializer

Controls which serializer class the Resource should use. Default is
tastypie.serializers.Serializer().

authentication

Controls which authentication class the Resource should use. Default is
tastypie.authentication.Authentication().

authorization

Controls which authorization class the Resource should use. Default is
tastypie.authorization.ReadOnlyAuthorization().

cache

Controls which cache class the Resource should use. Default is
tastypie.cache.NoCache().

throttle

Controls which throttle class the Resource should use. Default is
tastypie.throttle.BaseThrottle().

allowed_methods

Controls what list & detail REST methods the Resource should respond to.
Default is None, which means delegate to the more specific
list_allowed_methods & detail_allowed_methods options.

You may specify a list like ['get', 'post', 'put', 'delete'] as a shortcut
to prevent having to specify the other options.

list_allowed_methods

Controls what list REST methods the Resource should respond to. Default
is ['get', 'post', 'put', 'delete'].

detail_allowed_methods

Controls what list REST methods the Resource should respond to. Default
is ['get', 'post', 'put', 'delete'].

limit

Controls what how many results the Resource will show at a time. Default
is either the API_LIMIT_PER_PAGE setting (if provided) or 20 if not
specified.

api_name

An override for the Resource to use when generating resource URLs.
Default is None.

resource_name

An override for the Resource to use when generating resource URLs.
Default is None.

If not provided, the Resource or ModelResource will attempt to name
itself. This means a lowercase version of the classname preceding the word
Resource if present (i.e. SampleContentResource would become
samplecontent).

default_format

Specifies the default serialization format the Resource should use if
one is not requested (usually by the Accept header or format GET
parameter). Default is application/json.

filtering

Provides a list of fields that the Resource will accept client
filtering on. Default is {}.

Keys should be the fieldnames as strings while values should be a list of
accepted filter types.

ordering

Specifies the default ordering the Resource should present the individual
resources in. Default is [].

Values should be the fieldnames as strings, with an optional preceding -
to control descending order.

object_class

Provides the Resource with the object that serves as the data source.
Default is None.

In the case of ModelResource, this is automatically populated by the
queryset option and is the model class.

queryset

Provides the Resource with the set of Django models to respond with.
Default is None.

Unused by Resource but present for consistency.

fields

Controls what introspected fields the Resource should include.
A whitelist of fields. Default is [].

excludes

Controls what introspected fields the Resource should NOT include.
A blacklist of fields. Default is [].

include_resource_uri

Specifies if the Resource should include an extra field that displays
the detail URL (within the api) for that resource. Default is True.

include_absolute_url

Specifies if the Resource should include an extra field that displays
the get_absolute_url for that object (on the site proper). Default is
False.

Basic Filtering

ModelResource provides a basic Django ORM filter
interface. Simply list the resource fields which you’d like to filter on and
the allowed expression in a filtering property of your resource’s Meta
class:

from tastypie.constants import ALL, ALL_WITH_RELATIONS

class MyResource(ModelResource):
 class Meta:
 filtering = {
 "slug": ('exact', 'startswith',),
 "title": ALL,
 }

Valid filtering values are: Django ORM filters (e.g. startswith,
exact, lte, etc. or the ALL or ALL_WITH_RELATIONS constants
defined in tastypie.constants.

These filters will be extracted from URL query strings using the same
double-underscore syntax as the Django ORM:

/api/v1/myresource/?slug=myslug
/api/v1/myresource/?slug__startswith=test

Advanced Filtering

If you need to filter things other than ORM resources or wish to apply
additional constraints (e.g. text filtering using django-haystack
<http://haystacksearch.org> rather than simple database queries) your
Resource may define a custom
build_filters() method which allows you to
filter the queryset before processing a request:

from haystack.query import SearchQuerySet

class MyResource(Resource):
 def build_filters(self, filters=None):
 if filters is None:
 filters = {}

 orm_filters = super(MyResource, self).build_filters(filters)

 if "q" in filters:
 sqs = SearchQuerySet().auto_query(filters['q'])

 orm_filters = {"pk__in": [i.pk for i in sqs]}

 return orm_filters

Resource Methods

Handles the data, request dispatch and responding to requests.

Serialization/deserialization is handled “at the edges” (i.e. at the
beginning/end of the request/response cycle) so that everything internally
is Python data structures.

This class tries to be non-model specific, so it can be hooked up to other
data sources, such as search results, files, other data, etc.

wrap_view

	
Resource.wrap_view(self, view):

	

Wraps methods so they can be called in a more functional way as well
as handling exceptions better.

Note that if BadRequest or an exception with a response attr are seen,
there is special handling to either present a message back to the user or
return the response traveling with the exception.

urls

	
Resource.urls(self):

	

Property

The endpoints this Resource responds to.

Mostly a standard URLconf, this is suitable for either automatic use
when registered with an Api class or for including directly in
a URLconf should you choose to.

determine_format

	
Resource.determine_format(self, request):

	

Used to determine the desired format.

Largely relies on tastypie.utils.mime.determine_format but here
as a point of extension.

serialize

	
Resource.serialize(self, request, data, format, options=None):

	

Given a request, data and a desired format, produces a serialized
version suitable for transfer over the wire.

Mostly a hook, this uses the Serializer from Resource._meta.

deserialize

	
Resource.deserialize(self, request, data, format='application/json'):

	

Given a request, data and a format, deserializes the given data.

It relies on the request properly sending a CONTENT_TYPE header,
falling back to application/json if not provided.

Mostly a hook, this uses the Serializer from Resource._meta.

dispatch_list

	
Resource.dispatch_list(self, request, **kwargs):

	

A view for handling the various HTTP methods (GET/POST/PUT/DELETE) over
the entire list of resources.

Relies on Resource.dispatch for the heavy-lifting.

dispatch_detail

	
Resource.dispatch_detail(self, request, **kwargs):

	

A view for handling the various HTTP methods (GET/POST/PUT/DELETE) on
a single resource.

Relies on Resource.dispatch for the heavy-lifting.

dispatch

	
Resource.dispatch(self, request_type, request, **kwargs):

	

Handles the common operations (allowed HTTP method, authentication,
throttling, method lookup) surrounding most CRUD interactions.

remove_api_resource_names

	
Resource.remove_api_resource_names(self, url_dict):

	

Given a dictionary of regex matches from a URLconf, removes
api_name and/or resource_name if found.

This is useful for converting URLconf matches into something suitable
for data lookup. For example:

Model.objects.filter(**self.remove_api_resource_names(matches))

method_check

	
Resource.method_check(self, request, allowed=None):

	

Ensures that the HTTP method used on the request is allowed to be
handled by the resource.

Takes an allowed parameter, which should be a list of lowercase
HTTP methods to check against. Usually, this looks like:

The most generic lookup.
self.method_check(request, self._meta.allowed_methods)

A lookup against what's allowed for list-type methods.
self.method_check(request, self._meta.list_allowed_methods)

A useful check when creating a new endpoint that only handles
GET.
self.method_check(request, ['get'])

is_authorized

	
Resource.is_authorized(self, request, object=None):

	

Handles checking of permissions to see if the user has authorization
to GET, POST, PUT, or DELETE this resource. If object is provided,
the authorization backend can apply additional row-level permissions
checking.

is_authenticated

	
Resource.is_authenticated(self, request):

	

Handles checking if the user is authenticated and dealing with
unauthenticated users.

Mostly a hook, this uses class assigned to authentication from
Resource._meta.

throttle_check

	
Resource.throttle_check(self, request):

	

Handles checking if the user should be throttled.

Mostly a hook, this uses class assigned to throttle from
Resource._meta.

log_throttled_access

	
Resource.log_throttled_access(self, request):

	

Handles the recording of the user’s access for throttling purposes.

Mostly a hook, this uses class assigned to throttle from
Resource._meta.

build_bundle

	
Resource.build_bundle(self, obj=None, data=None):

	

Given either an object, a data dictionary or both, builds a Bundle
for use throughout the dehydrate/hydrate cycle.

If no object is provided, an empty object from
Resource._meta.object_class is created so that attempts to access
bundle.obj do not fail.

build_filters

	
Resource.build_filters(self, filters=None):

	

Allows for the filtering of applicable objects.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

apply_sorting

	
Resource.apply_sorting(self, obj_list, options=None):

	

Allows for the sorting of objects being returned.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

get_resource_uri

	
Resource.get_resource_uri(self, bundle_or_obj):

	

This needs to be implemented at the user level.

A return reverse("api_dispatch_detail", kwargs={'resource_name':
self.resource_name, 'pk': object.id}) should be all that would
be needed.

ModelResource includes a full working version specific to Django’s
Models.

get_resource_list_uri

	
Resource.get_resource_list_uri(self):

	

Returns a URL specific to this resource’s list endpoint.

get_via_uri

	
Resource.get_via_uri(self, uri):

	

This pulls apart the salient bits of the URI and populates the
resource via a obj_get.

If you need custom behavior based on other portions of the URI,
simply override this method.

full_dehydrate

	
Resource.full_dehydrate(self, obj):

	

Given an object instance, extract the information from it to populate
the resource.

dehydrate

	
Resource.dehydrate(self, bundle):

	

A hook to allow a final manipulation of data once all fields/methods
have built out the dehydrated data.

Useful if you need to access more than one dehydrated field or want
to annotate on additional data.

Must return the modified bundle.

full_hydrate

	
Resource.full_hydrate(self, bundle):

	

Given a populated bundle, distill it and turn it back into
a full-fledged object instance.

hydrate

	
Resource.hydrate(self, bundle):

	

A hook to allow a final manipulation of data once all fields/methods
have built out the hydrated data.

Useful if you need to access more than one hydrated field or want
to annotate on additional data.

Must return the modified bundle.

hydrate_m2m

	
Resource.hydrate_m2m(self, bundle):

	

Populate the ManyToMany data on the instance.

build_schema

	
Resource.build_schema(self):

	

Returns a dictionary of all the fields on the resource and some
properties about those fields.

Used by the schema/ endpoint to describe what will be available.

dehydrate_resource_uri

	
Resource.dehydrate_resource_uri(self, bundle):

	

For the automatically included resource_uri field, dehydrate
the URI for the given bundle.

Returns empty string if no URI can be generated.

generate_cache_key

	
Resource.generate_cache_key(self, *args, **kwargs):

	

Creates a unique-enough cache key.

This is based off the current api_name/resource_name/args/kwargs.

obj_get_list

	
Resource.obj_get_list(self, filters=None, **kwargs):

	

Fetches the list of objects available on the resource.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

cached_obj_get_list

	
Resource.cached_obj_get_list(self, **kwargs):

	

A version of obj_get_list that uses the cache as a means to get
commonly-accessed data faster.

obj_get

	
Resource.obj_get(self, **kwargs):

	

Fetches an individual object on the resource.

This needs to be implemented at the user level. If the object can not
be found, this should raise a NotFound exception.

ModelResource includes a full working version specific to Django’s
Models.

cached_obj_get

	
Resource.cached_obj_get(self, **kwargs):

	

A version of obj_get that uses the cache as a means to get
commonly-accessed data faster.

obj_create

	
Resource.obj_create(self, bundle, **kwargs):

	

Creates a new object based on the provided data.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

obj_update

	
Resource.obj_update(self, bundle, **kwargs):

	

Updates an existing object (or creates a new object) based on the
provided data.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

obj_delete_list

	
Resource.obj_delete_list(self, **kwargs):

	

Deletes an entire list of objects.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

obj_delete

	
Resource.obj_delete(self, **kwargs):

	

Deletes a single object.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s
Models.

create_response

	
Resource.create_response(self, request, data):

	

Extracts the common “which-format/serialize/return-response” cycle.

Mostly a useful shortcut/hook.

get_list

	
Resource.get_list(self, request, **kwargs):

	

Returns a serialized list of resources.

Calls obj_get_list to provide the data, then handles that result
set and serializes it.

Should return a HttpResponse (200 OK).

get_detail

	
Resource.get_detail(self, request, **kwargs):

	

Returns a single serialized resource.

Calls cached_obj_get/obj_get to provide the data, then handles that result
set and serializes it.

Should return a HttpResponse (200 OK).

put_list

	
Resource.put_list(self, request, **kwargs):

	

Replaces a collection of resources with another collection.

Calls delete_list to clear out the collection then obj_create
with the provided the data to create the new collection.

Return HttpAccepted (204 No Content).

put_detail

	
Resource.put_detail(self, request, **kwargs):

	

Either updates an existing resource or creates a new one with the
provided data.

Calls obj_update with the provided data first, but falls back to
obj_create if the object does not already exist.

If a new resource is created, return HttpCreated (201 Created).
If an existing resource is modified, return HttpAccepted (204 No Content).

post_list

	
Resource.post_list(self, request, **kwargs):

	

Creates a new resource/object with the provided data.

Calls obj_create with the provided data and returns a response
with the new resource’s location.

If a new resource is created, return HttpCreated (201 Created).

post_detail

	
Resource.post_detail(self, request, **kwargs):

	

Creates a new subcollection of the resource under a resource.

This is not implemented by default because most people’s data models
aren’t self-referential.

If a new resource is created, return HttpCreated (201 Created).

delete_list

	
Resource.delete_list(self, request, **kwargs):

	

Destroys a collection of resources/objects.

Calls obj_delete_list.

If the resources are deleted, return HttpAccepted (204 No Content).

delete_detail

	
Resource.delete_detail(self, request, **kwargs):

	

Destroys a single resource/object.

Calls obj_delete.

If the resource is deleted, return HttpAccepted (204 No Content).
If the resource did not exist, return HttpGone (410 Gone).

get_schema

	
Resource.get_schema(self, request, **kwargs):

	

Returns a serialized form of the schema of the resource.

Calls build_schema to generate the data. This method only responds
to HTTP GET.

Should return a HttpResponse (200 OK).

get_multiple

	
Resource.get_multiple(self, request, **kwargs):

	

Returns a serialized list of resources based on the identifiers
from the URL.

Calls obj_get to fetch only the objects requested. This method
only responds to HTTP GET.

Should return a HttpResponse (200 OK).

ModelResource Methods

A subclass of Resource designed to work with Django’s Models.

This class will introspect a given Model and build a field list based
on the fields found on the model (excluding relational fields).

Given that it is aware of Django’s ORM, it also handles the CRUD data
operations of the resource.

should_skip_field

	
Resource.should_skip_field(cls, field):

	

Class method

Given a Django model field, return if it should be included in the
contributed ApiFields.

api_field_from_django_field

	
Resource.api_field_from_django_field(cls, f, default=CharField):

	

Class method

Returns the field type that would likely be associated with each
Django type.

get_fields

	
Resource.get_fields(cls, fields=None, excludes=None):

	

Class method

Given any explicit fields to include and fields to exclude, add
additional fields based on the associated model.

build_filters

	
Resource.build_filters(self, filters=None):

	

Given a dictionary of filters, create the necessary ORM-level filters.

Keys should be resource fields, NOT model fields.

Valid values are either a list of Django filter types (i.e.
['startswith', 'exact', 'lte']), the ALL constant or the
ALL_WITH_RELATIONS constant.

At the declarative level:

filtering = {
 'resource_field_name': ['exact', 'startswith', 'endswith', 'contains'],
 'resource_field_name_2': ['exact', 'gt', 'gte', 'lt', 'lte', 'range'],
 'resource_field_name_3': ALL,
 'resource_field_name_4': ALL_WITH_RELATIONS,
 ...
}

Accepts the filters as a dict. None by default, meaning no filters.

apply_sorting

	
Resource.apply_sorting(self, obj_list, options=None):

	

Given a dictionary of options, apply some ORM-level sorting to the
provided QuerySet.

Looks for the sort_by key and handles either ascending (just the
field name) or descending (the field name with a - in front).

The field name should be the resource field, NOT model field.

obj_get_list

	
Resource.obj_get_list(self, filters=None, **kwargs):

	

A ORM-specific implementation of obj_get_list.

Takes an optional filters dictionary, which can be used to narrow
the query.

obj_get

	
Resource.obj_get(self, **kwargs):

	

A ORM-specific implementation of obj_get.

Takes optional kwargs, which are used to narrow the query to find
the instance.

obj_create

	
Resource.obj_create(self, bundle, **kwargs):

	

A ORM-specific implementation of obj_create.

obj_update

	
Resource.obj_update(self, bundle, **kwargs):

	

A ORM-specific implementation of obj_update.

obj_delete_list

	
Resource.obj_delete_list(self, **kwargs):

	

A ORM-specific implementation of obj_delete_list.

Takes optional kwargs, which can be used to narrow the query.

obj_delete

	
Resource.obj_delete(self, **kwargs):

	

A ORM-specific implementation of obj_delete.

Takes optional kwargs, which are used to narrow the query to find
the instance.

save_m2m

	
Resource.save_m2m(self, bundle):

	

Handles the saving of related M2M data.

Due to the way Django works, the M2M data must be handled after the
main instance, which is why this isn’t a part of the main save bits.

Currently slightly inefficient in that it will clear out the whole
relation and recreate the related data as needed.

get_resource_uri

	
Resource.get_resource_uri(self, bundle_or_obj):

	

Handles generating a resource URI for a single resource.

Uses the model’s pk in order to create the URI.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Api

In terms of a REST-style architecture, the “api” is a collection of resources.
In Tastypie, the Api gathers together the Resources & provides a nice
way to use them as a set. It handles many of the URLconf details for you,
provides a helpful “top-level” view to show what endpoints are available &
some extra URL resolution juice.

Quick Start

A sample api definition might look something like (usually located in a
URLconf):

from tastypie.api import Api
from myapp.api.resources import UserResource, EntryResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource)
v1_api.register(EntryResource)

Standard bits...
urlpatterns = patterns('',
 (r'^api/', include(v1_api.urls)),
)

Api Methods

Implements a registry to tie together the various resources that make up
an API.

Especially useful for navigation, HATEOAS and for providing multiple
versions of your API.

Optionally supplying api_name allows you to name the API. Generally,
this is done with version numbers (i.e. v1, v2, etc.) but can
be named any string.

register

	
Api.register(self, resource, canonical=True):

	

Registers a Resource subclass with the API.

Optionally accept a canonical argument, which indicates that the
resource being registered is the canonical variant. Defaults to
True.

unregister

	
Api.unregister(self, resource_name):

	

If present, unregisters a resource from the API.

canonical_resource_for

	
Api.canonical_resource_for(self, resource_name):

	

Returns the canonical resource for a given resource_name.

urls

	
Api.urls(self):

	

Property

Provides URLconf details for the Api and all registered
Resources beneath it.

top_level

	
Api.top_level(self, request, api_name=None):

	

A view that returns a serialized list of all resources registers
to the Api. Useful for discovery.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Authentication / Authorization

Authentication & authorization make up the components needed to verify that
a certain user has access to the API and what they can do with it.

Authentication answers the question “can they see this data?” This usually
involves requiring credentials, such as an API key or username/password.

Authorization answers the question “what objects can they modify?” This usually
involves checking permissions, but is open to other implementations.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.authentication import BasicAuthentication
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 authentication = BasicAuthentication()
 authorization = DjangoAuthorization()

Authentication Options

Tastypie ships with the following Authentication classes:

Authentication

The no-op authentication option, the client is always allowed through. Very
useful for development and read-only APIs.

BasicAuthentication

This authentication scheme uses HTTP Basic Auth to check a user’s credentials.
The username is their django.contrib.auth.models.User username (assuming
it is present) and their password should also correspond to that entry.

ApiKeyAuthentication

As an alternative to requiring sensitive data like a password, the
ApiKeyAuthentication allows you to collect just username & a
machine-generated api key. Tastypie ships with a special Model just for
this purpose, so you’ll need to ensure tastypie is in INSTALLED_APPS.

Authorization Options

Tastypie ships with the following Authorization classes:

Authorization

The no-op authorization option, no permissions checks are performed.

Warning

This is a potentially dangerous option, as it means ANY recognized user
can modify ANY data they encounter in the API. Be careful who you trust.

ReadOnlyAuthorization

This authorization class only permits reading data, regardless of what the
Resource might think is allowed. This is the default Authorization
class and the safe option.

DjangoAuthorization

The most advanced form of authorization, this checks the permission a user
has granted to them (via django.contrib.auth.models.Permission). In
conjunction with the admin, this is a very effective means of control.

Implementing Your Own Authentication/Authorization

Implementing your own Authentication/Authorization classes is a simple
process. Authentication has two methods to override (one of which is
optional but recommended to be customized) and Authorization has just one
required method:

from tastypie.authentication import Authentication
from tastypie.authorization import Authorization

class SillyAuthentication(NoCache):
 def is_authenticated(self, request, **kwargs):
 if 'daniel' in request.user.username:
 return True

 return False

 # Optional but recommended
 def get_identifier(self, request):
 return request.user.username

class SillyAuthorization(Authorization):
 def is_authorized(self, request, object=None):
 if request.user.date_joined.year == 2010:
 return True
 else:
 return False

Under this scheme, only users with ‘daniel’ in their username will be allowed
in, and only those who joined the site in 2010 will be allowed to affect data.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Caching

When adding an API to your site, it’s important to understand that most
consumers of the API will not be people, but instead machines. This means that
the traditional “fetch-read-click” cycle is no longer measured in minutes but
in seconds or milliseconds.

As such, caching is a very important part of the deployment of your API.
Tastypie ships with two classes to make working with caching easier. These
caches store at the object level, reducing access time on the database.

However, it’s worth noting that these do NOT cache serialized representations.
For heavy traffic, we’d encourage the use of a caching proxy, especially
Varnish [http://www.varnish-cache.org/], as it shines under this kind of usage. It’s far faster than Django
views and already neatly handles most situations.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.cache import SimpleCache
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 cache = SimpleCache()

Caching Options

Tastypie ships with the following Cache classes:

NoCache

The no-op cache option, this does no caching but serves as an api-compatible
plug. Very useful for development.

SimpleCache

This option does basic object caching, attempting to find the object in the
cache & writing the object to the cache. It uses Django’s current
CACHE_BACKEND to store cached data.

Implementing Your Own Cache

Implementing your own Cache class is as simple as subclassing NoCache
and overriding the get & set methods. For example, a json-backed
cache might look like:

import json
from django.conf import settings
from tastypie.cache import NoCache

class JSONCache(NoCache):
 def _load(self):
 data_file = open(settings.TASTYPIE_JSON_CACHE, 'r')
 return json.load(data_file)

 def _save(self, data):
 data_file = open(settings.TASTYPIE_JSON_CACHE, 'w')
 return json.dump(data, data_file)

 def get(self, key):
 data = self._load()
 return data.get(key, None)

 def set(self, key, value, timeout=60):
 data = self._load()
 data[key] = value
 self._save(data)

Note that this is NOT necessarily an optimal solution, but is simply
demonstrating how one might go about implementing your own Cache.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Serialization

Serialization can be one of the most contentious areas of an API. Everyone
has their own requirements, their own preferred output format & the desire to
have control over what is returned.

As a result, Tastypie ships with a serializer that tries to meet the basic
needs of most use cases, and the flexibility to go outside of that when you
need to.

The default Serializer supports the following formats:

	json

	jsonp

	xml

	yaml

	html

Usage

Using this class is simple. It is the default option on all Resource
classes unless otherwise specified. The following code is a no-op, but
demonstrate how you could use your own serializer:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 serializer = Serializer()

Implementing Your Own Serializer

There are several different use cases here. We’ll cover simple examples of
wanting a tweaked format & adding a different format.

To tweak a format, simply override it’s to_<format> & from_<format>
methods. So adding the server time to all output might look like so:

import time
from tastypie.serializers import Serializer

class CustomJSONSerializer(Serializer):
 def to_json(self, data, options=None):
 options = options or {}

 # Add in the current time.
 data['requested_time'] = time.time()

 data = self.to_simple(data, options)
 return simplejson.dumps(data, cls=json.DjangoJSONEncoder, sort_keys=True)

 def from_json(self, content):
 data = simplejson.loads(content)

 if 'requested_time' in data:
 # Log the request here...
 pass

 return data

In the case of adding a different format, let’s say you want to add a CSV
output option to the existing set. Your Serializer subclass might look
like:

import csv
import StringIO
from tastypie.serializers import Serializer

class CSVSerializer(Serializer):
 formats = ['json', 'jsonp', 'xml', 'yaml', 'html', 'csv']
 content_types = {
 'json': 'application/json',
 'jsonp': 'text/javascript',
 'xml': 'application/xml',
 'yaml': 'text/yaml',
 'html': 'text/html',
 'csv': 'text/csv',
 }

 def to_csv(self, data, options=None):
 options = options or {}
 data = self.to_simple(data, options)
 raw_data = StringIO.StringIO()
 # Untested, so this might not work exactly right.
 for item in data:
 writer = csv.DictWriter(raw_data, item.keys(), extrasaction='ignore')
 writer.write(item)
 return raw_data

 def from_csv(self, content):
 raw_data = StringIO.StringIO(content)
 data = []
 # Untested, so this might not work exactly right.
 for item in csv.DictReader(raw_data):
 data.append(item)
 return data

Serializer Methods

A swappable class for serialization.

This handles most types of data as well as the following output formats:

* json
* jsonp
* xml
* yaml
* html

It was designed to make changing behavior easy, either by overridding the
various format methods (i.e. to_json), by changing the
formats/content_types options or by altering the other hook methods.

get_mime_for_format

	
Serializer.get_mime_for_format(self, format):

	

Given a format, attempts to determine the correct MIME type.

If not available on the current Serializer, returns
application/json by default.

serialize

	
Serializer.serialize(self, bundle, format='application/json', options={}):

	

Given some data and a format, calls the correct method to serialize
the data and returns the result.

deserialize

	
Serializer.deserialize(self, content, format='application/json'):

	

Given some data and a format, calls the correct method to deserialize
the data and returns the result.

to_simple

	
Serializer.to_simple(self, data, options):

	

For a piece of data, attempts to recognize it and provide a simplified
form of something complex.

This brings complex Python data structures down to native types of the
serialization format(s).

to_etree

	
Serializer.to_etree(self, data, options=None, name=None, depth=0):

	

Given some data, converts that data to an etree.Element suitable
for use in the XML output.

from_etree

	
Serializer.from_etree(self, data):

	

Not the smartest deserializer on the planet. At the request level,
it first tries to output the deserialized subelement called “object”
or “objects” and falls back to deserializing based on hinted types in
the XML element attribute “type”.

to_json

	
Serializer.to_json(self, data, options=None):

	

Given some Python data, produces JSON output.

from_json

	
Serializer.from_json(self, content):

	

Given some JSON data, returns a Python dictionary of the decoded data.

to_jsonp

	
Serializer.to_jsonp(self, data, options=None):

	

Given some Python data, produces JSON output wrapped in the provided
callback.

to_xml

	
Serializer.to_xml(self, data, options=None):

	

Given some Python data, produces XML output.

from_xml

	
Serializer.from_xml(self, content):

	

Given some XML data, returns a Python dictionary of the decoded data.

to_yaml

	
Serializer.to_yaml(self, data, options=None):

	

Given some Python data, produces YAML output.

from_yaml

	
Serializer.from_yaml(self, content):

	

Given some YAML data, returns a Python dictionary of the decoded data.

to_html

	
Serializer.to_html(self, data, options=None):

	

Reserved for future usage.

The desire is to provide HTML output of a resource, making an API
available to a browser. This is on the TODO list but not currently
implemented.

from_html

	
Serializer.from_html(self, content):

	

Reserved for future usage.

The desire is to handle form-based (maybe Javascript?) input, making an
API available to a browser. This is on the TODO list but not currently
implemented.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Throttling

Sometimes, the client on the other end may request data too frequently or
you have a business use case that dictates that the client should be limited
to a certain number of requests per hour.

For this, Tastypie includes throttling as a way to limit the number of requests
in a timeframe.

Usage

To specify a throttle, add the Throttle class to the Meta class on the
Resource:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.throttle import BaseThrottle

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 throttle = BaseThrottle(throttle_at=100)

Throttle Options

Each of the Throttle classes accepts the following initialization
arguments:

	throttle_at - the number of requests at which the user should
be throttled. Default is 150 requests.

	timeframe - the length of time (in seconds) in which the user
make up to the throttle_at requests. Default is 3600 seconds (
1 hour).

	expiration - the length of time to retain the times the user
has accessed the api in the cache. Default is 604800 (1 week).

Tastypie ships with the following Throttle classes:

BaseThrottle

The no-op throttle option, this does no throttling but implements much of the
common logic and serves as an api-compatible plug. Very useful for development.

CacheThrottle

This uses just the cache to manage throttling. Fast but prone to cache misses
and/or cache restarts.

CacheDBThrottle

A write-through option that uses the cache first & foremost, but also writes
through to the database to persist access times. Useful for logging client
accesses & with RAM-only caches.

Implementing Your Own Throttle

Writing a Throttle class is not quite as simple as the other components.
There are two important methods, should_be_throttled & accessed. The
should_be_throttled method dictates whether or not the client should be
throttled. The accessed method allows for the recording of the hit to the
API.

An example of a subclass might be:

import random
from tastypie.throttle import BaseThrottle

class RandomThrottle(BaseThrottle):
 def should_be_throttled(self, identifier, **kwargs):
 if random.randint(0, 10) % 2 == 0:
 return True

 return False

 def accessed(self, identifier, **kwargs):
 pass

This throttle class would pick a random number between 0 & 10. If the number is
even, their request is allowed through; otherwise, their request is throttled &
rejected.

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Tastypie Cookbook

Adding Custom Values

You might encounter cases where you wish to include additional data in a
response which is not obtained from a field or method on your model. You can
easily extend the dehydrate() method to
provide additional values:

class MyModelResource(Resource):
 class Meta:
 qs = MyModel.objects.all()

 def dehydrate(self, bundle):
 bundle.data['custom_field'] = "Whatever you want"
 return bundle

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	
 previous |

 	Tastypie 0.9.0-beta documentation

Sites Using Tastypie

The following sites are a partial list of people using Tastypie. I’m always
interested in adding more sites, so please find me (daniellindsley) via
IRC or start a mailing list thread.

LJWorld Marketplace

	http://www2.ljworld.com/marketplace/api/v1/?format=json

Forkinit

	http://forkinit.com/api/v1/?format=json

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 Navigation

 	
 index

 	Tastypie 0.9.0-beta documentation

Index

 Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.10.0

 	v0.9.16

 	v0.9.15

 	v0.9.14

 	v0.9.13

 	v0.9.12

 	v0.9.11

 	v0.9.10

 	v0.9.9

 	v0.9.7

 	v0.9.6

 	v0.9.0

 	v0.8.3

 	v0.8.2

 	v0.8.1

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Tastypie 0.9.0-beta documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Daniel Lindsley, Cody Soyland & Matt Croydon.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.10.0

 		v0.9.16

 		v0.9.15

 		v0.9.14

 		v0.9.13

 		v0.9.12

 		v0.9.11

 		v0.9.10

 		v0.9.9

 		v0.9.7

 		v0.9.6

 		v0.9.0

 		v0.8.3

 		v0.8.2

 		v0.8.1

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

