

Table Of Contents

	Welcome to Tastypie!
	Getting Started with Tastypie

	Interacting With The API

	Tastypie Settings

	Using Tastypie With Non-ORM Data Sources

	Tools

	Testing

	Compatibility Notes

	Python 3 Support

	Resources

	Bundles

	Api

	Resource Fields

	Caching

	Validation

	Authentication

	Authorization

	Serialization

	Throttling

	Paginator

	GeoDjango

	ContentTypes and GenericForeignKeys

	Namespaces

	Tastypie Cookbook

	Debugging Tastypie

	Sites Using Tastypie

	Contributing

	Release Notes

	Quick Start

	Requirements
	Core

	Format Support

	Optional

	Why Tastypie?

	Reference Material

	Getting Help

	Running The Tests

	Getting Started with Tastypie
	Installation

	Configuration

	Creating Resources

	Hooking Up The Resource(s)

	Creating More Resources

	Adding To The Api

	Limiting Data And Access

	Beyond The Basics

	Interacting With The API
	Front Matter

	Fetching Data

	Sending Data

	Deleting Data

	Bulk Operations

	You Did It!

	Tastypie Settings
	API_LIMIT_PER_PAGE

	TASTYPIE_FULL_DEBUG

	TASTYPIE_CANNED_ERROR

	TASTYPIE_ALLOW_MISSING_SLASH

	TASTYPIE_DATETIME_FORMATTING

	TASTYPIE_DEFAULT_FORMATS

	TASTYPIE_ABSTRACT_APIKEY

	Using Tastypie With Non-ORM Data Sources
	Approach

	Using Riak for MessageResource

	Tools
	Browser

	Extensions

	Python

	Javascript

	Testing
	Example Usage

	Compatibility Notes
	ApiKey Database Index

	Python 3 Support
	Incompatibilities

	Notes

	Resources
	Quick Start

	Why Class-Based?

	Why Resource vs. ModelResource?

	Flow Through The Request/Response Cycle

	Why Resource URIs?

	Accessing The Current Request

	Advanced Data Preparation

	Reverse “Relationships”

	Resource Options (AKA Meta)

	Basic Filtering

	Advanced Filtering

	Using PUT/DELETE/PATCH In Unsupported Places

	Resource Methods

	ModelResource Methods

	Bundles
	What Are Bundles?

	Attributes

	Api
	Quick Start

	Api Methods

	Resource Fields
	Quick Start

	Standard Data Fields

	Relationship Fields

	Caching
	Usage

	Caching Options

	Implementing Your Own Cache

	HTTP Cache-Control

	HTTP Vary

	Validation
	Usage

	Validation Options

	Implementing Your Own Validation

	Authentication
	Usage

	Authentication Options

	Implementing Your Own Authentication/Authorization

	Authorization
	Usage

	Authorization Options

	The Authorization API

	Implementing Your Own Authorization

	Serialization
	Usage

	Serialization Security

	Implementing Your Own Serializer

	Serializer Methods

	Throttling
	Usage

	Throttle Options

	Implementing Your Own Throttle

	Usage with Resource

	Paginator
	Usage

	Implementing Your Own Paginator

	GeoDjango
	Usage

	ContentTypes and GenericForeignKeys
	Usage

	Tastypie Cookbook
	Creating a Full OAuth 2.0 API

	Adding Custom Values

	Per-Request Alterations To The Queryset

	Using Your Resource In Regular Views

	Using Non-PK Data For Your URLs

	Nested Resources

	Adding Search Functionality

	Creating per-user resources

	camelCase JSON Serialization

	Pretty-printed JSON Serialization

	Determining format via URL

	Adding to the Django Admin

	Using SessionAuthentication

	Debugging Tastypie
	“I’m getting XML output in my browser but I want JSON output!”

	Querying using Tastypie’s methods isn’t working/returning multiple objects

	“What’s the format for a POST or PUT?”

	Sites Using Tastypie
	Teachoo

	LJWorld Marketplace

	Forkinit

	Read The Docs

	Luzme

	Politifact

	LocalWiki

	I-Am-CC.org

	Dbpatterns

	CourtListener

	Contributing
	Philosophy

	Guidelines For Reporting An Issue/Feature

	Guidelines For Contributing Code

	Guidelines For Core Contributors

Indices and tables

	Search Page

Welcome to Tastypie!

Tastypie is a webservice API framework for Django. It provides a convenient,
yet powerful and highly customizable, abstraction for creating REST-style
interfaces.

	Getting Started with Tastypie

	Interacting With The API

	Tastypie Settings

	Using Tastypie With Non-ORM Data Sources

	Tools

	Testing

	Compatibility Notes

	Python 3 Support

	Resources

	Bundles

	Api

	Resource Fields

	Caching

	Validation

	Authentication

	Authorization

	Serialization

	Throttling

	Paginator

	GeoDjango

	ContentTypes and GenericForeignKeys

	Namespaces

	Tastypie Cookbook

	Debugging Tastypie

	Sites Using Tastypie

	Contributing

	Release Notes
	dev

	v0.14.3

	v0.14.2

	v0.14.1

	v0.14.0

	v0.13.3

	v0.13.2

	v0.13.1

	v0.13.0

	v0.12.2

	v0.12.1

	v0.12.0

	v0.11.1

	v0.11.0

	v0.10.0

	v0.9.16

	v0.9.15

	v0.9.14

	v0.9.13

Quick Start

	Add tastypie to INSTALLED_APPS.

	Create an api directory in your app with a bare __init__.py.

	Create an <my_app>/api/resources.py file and place the following in it:

from tastypie.resources import ModelResource
from my_app.models import MyModel

class MyModelResource(ModelResource):
 class Meta:
 queryset = MyModel.objects.all()
 allowed_methods = ['get']

	In your root URLconf, add the following code (around where the admin code might be):

from django.conf.urls import url, include
from tastypie.api import Api
from my_app.api.resources import MyModelResource

v1_api = Api(api_name='v1')
v1_api.register(MyModelResource())

urlpatterns = [
 # ...more URLconf bits here...
 # Then add:
 url(r'^api/', include(v1_api.urls)),
]

	Hit http://localhost:8000/api/v1/?format=json in your browser!

Requirements

Core

	Python 2.7+ or Python 3.4+ (Whatever is supported by your version of Django)

	Django 1.11, 2.2 (LTS releases) or Django 3.0 (latest release)

	dateutil (http://labix.org/python-dateutil) >= 2.1

Format Support

	XML: lxml 3 (http://lxml.de/) and defusedxml (https://pypi.python.org/pypi/defusedxml)

	YAML: pyyaml (http://pyyaml.org/)

	binary plist: biplist (https://bitbucket.org/wooster/biplist)

Optional

	HTTP Digest authentication: python3-digest (https://bitbucket.org/akoha/python-digest/)

Why Tastypie?

There are other API frameworks out there for Django. You need to
assess the options available and decide for yourself. That said, here are some
common reasons for tastypie.

	You need an API that is RESTful and uses HTTP well.

	You want to support deep relations.

	You DON’T want to have to write your own serializer to make the output right.

	You want an API framework that has little magic, very flexible and maps well to
the problem domain.

	You want/need XML serialization that is treated equally to JSON (and YAML is
there too).

Reference Material

	https://django-tastypie.readthedocs.io/en/latest/

	https://github.com/django-tastypie/django-tastypie/tree/master/tests/basic shows
basic usage of tastypie

	http://en.wikipedia.org/wiki/REST

	http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

	http://www.ietf.org/rfc/rfc2616.txt

	http://jacobian.org/writing/rest-worst-practices/

Getting Help

There are two primary ways of getting help.

	Go to StackOverflow [https://stackoverflow.com/questions/tagged/tastypie] and post a question with the tastypie tag.

	We have an IRC channel (#tastypie on irc.freenode.net) to get help,
bounce an idea by us, or generally shoot the breeze.

Running The Tests

The easiest way to get setup to run Tastypie’s tests looks like:

$ git clone https://github.com/django-tastypie/django-tastypie.git
$ cd django-tastypie
$ virtualenv env
$. env/bin/activate
$./env/bin/pip install -U -r requirements.txt

Then running the tests is as simple as:

From the same directory as above:
$./env/bin/pip install -U -r tests/requirements.txt
$./env/bin/pip install tox
$ tox

Tastypie is maintained with all tests passing at all times for released
dependencies. (At times tests may fail with development versions of Django.
These will be noted as allowed failures in the .travis.yml file.) If you
find a failure, please report it [https://github.com/django-tastypie/django-tastypie/issues] along with the versions of the installed
software.

Getting Started with Tastypie

Tastypie is a reusable app (that is, it relies only on its own code and
focuses on providing just a REST-style API) and is suitable for providing an
API to any application without having to modify the sources of that app.

Not everyone’s needs are the same, so Tastypie goes out of its way to provide
plenty of hooks for overriding or extending how it works.

Note

If you hit a stumbling block, you can join
#tastypie on irc.freenode.net to get help.

 Interacting With The API

Interacting With The API

Now that you’ve got a shiny new REST-style API in place, let’s demonstrate how
to interact with it. We’ll assume that you have cURL [http://curl.haxx.se/] installed on your system
(generally available on most modern Mac & Linux machines), but any tool that
allows you to control headers & bodies on requests will do.

We’ll assume that we’re interacting with the following Tastypie code:

myapp/api/resources.py
from django.contrib.auth.models import User
from tastypie.authorization import Authorization
from tastypie import fields
from tastypie.resources import ModelResource, ALL, ALL_WITH_RELATIONS
from myapp.models import Entry

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'user'
 excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']
 filtering = {
 'username': ALL,
 }

class EntryResource(ModelResource):
 user = fields.ForeignKey(UserResource, 'user')

 class Meta:
 queryset = Entry.objects.all()
 resource_name = 'entry'
 authorization = Authorization()
 filtering = {
 'user': ALL_WITH_RELATIONS,
 'pub_date': ['exact', 'lt', 'lte', 'gte', 'gt'],
 }

urls.py
from django.conf.urls import url, include
from tastypie.api import Api
from myapp.api.resources import EntryResource, UserResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource())
v1_api.register(EntryResource())

urlpatterns = [
 # The normal jazz here...
 url(r'^blog/', include('myapp.urls')),
 url(r'^api/', include(v1_api.urls)),
]

Let’s fire up a shell & start exploring the API!

Front Matter

Tastypie tries to treat all clients & all serialization types as equally as
possible. It also tries to be a good ‘Net citizen & respects the HTTP method
used as well as the Accepts headers sent. Between these two, you control
all interactions with Tastypie through relatively few endpoints.

Warning

Should you try these URLs in your browser, be warned you WILL need to
append ?format=json (or xml or yaml) to the URL. Your browser
requests application/xml before application/json, so you’ll always
get back XML if you don’t specify it.

That’s also why it’s recommended that you explore via curl, because you
avoid your browser’s opinionated requests & get something closer to what
any programmatic clients will get.

 Tastypie Settings

Tastypie Settings

This is a comprehensive list of the settings Tastypie recognizes.

API_LIMIT_PER_PAGE

Optional

This setting controls the default number of records Tastypie will show
in a list view.

This is only used when a user does not specify a limit GET parameter and
the Resource subclass has not overridden the number to be shown.

An example:

API_LIMIT_PER_PAGE = 50

If you don’t want to limit the number of records by default, you can set this setting to 0:

API_LIMIT_PER_PAGE = 0

Defaults to 20.

TASTYPIE_FULL_DEBUG

Optional

This setting controls what the behavior is when an unhandled exception occurs.

If set to True and settings.DEBUG = True, the standard Django
technical 500 is displayed.

If not set or set to False, Tastypie will return a serialized response.
If settings.DEBUG is True, you’ll get the actual exception message plus
a traceback. If settings.DEBUG is False, Tastypie will call
mail_admins() and provide a canned error message (which you can override
with TASTYPIE_CANNED_ERROR) in the response.

An example:

TASTYPIE_FULL_DEBUG = True

Defaults to False.

TASTYPIE_CANNED_ERROR

Optional

This setting allows you to override the canned error response when an
unhandled exception is raised and settings.DEBUG is False.

An example:

TASTYPIE_CANNED_ERROR = "Oops, we broke it!"

Defaults to "Sorry, this request could not be processed. Please try again later.".

TASTYPIE_ALLOW_MISSING_SLASH

Optional

This setting allows your URLs to be missing the final slash. Useful for
integrating with other systems.

You must also have settings.APPEND_SLASH = False so that Django does not
emit HTTP 302 redirects.

An example:

TASTYPIE_ALLOW_MISSING_SLASH = True

Defaults to False.

TASTYPIE_DATETIME_FORMATTING

Optional

This setting allows you to globally choose what format your datetime/date/time
data will be formatted in. Valid options are iso-8601, iso-8601-strict & rfc-2822.

An example:

TASTYPIE_DATETIME_FORMATTING = 'rfc-2822'

Defaults to iso-8601. iso-8601 includes microseconds if available, use iso-8601-strict to strip them.

TASTYPIE_DEFAULT_FORMATS

Optional

This setting allows you to globally configure the list of allowed serialization
formats for your entire site.

An example:

TASTYPIE_DEFAULT_FORMATS = ['json', 'xml']

Defaults to ['json', 'xml', 'yaml', 'plist'].

TASTYPIE_ABSTRACT_APIKEY

Optional

This setting makes the ApiKey model an abstract base class [https://docs.djangoproject.com/en/dev/topics/db/models/#abstract-base-classes]. This may be
useful in multi-database setups where many databases each have their own table
for user data and ApiKeyAuthentication is not used. Without this setting,
the tastypie_apikey table would have to be created on each database
containing user account data (such as Django’s built-in auth_user table
generated by django.contrib.auth.models.User). Valid options are True &
False.

An example:

TASTYPIE_ABSTRACT_APIKEY = True

Defaults to False.

 Using Tastypie With Non-ORM Data Sources

Using Tastypie With Non-ORM Data Sources

Much of this documentation demonstrates the use of Tastypie with Django’s ORM.
You might think that Tastypie depended on the ORM, when in fact, it was
purpose-built to handle non-ORM data. This documentation should help you get
started providing APIs using other data sources.

Virtually all of the code that makes Tastypie actually process requests &
return data is within the Resource class. ModelResource is actually a
light wrapper around Resource that provides ORM-specific access. The
methods that ModelResource overrides are the same ones you’ll need to
override when hooking up your data source.

Approach

When working with Resource, many things are handled for you. All the
authentication/authorization/caching/serialization/throttling bits should work
as normal and Tastypie can support all the REST-style methods. Schemas &
discovery views all work the same as well.

What you don’t get out of the box are the fields you’re choosing to expose &
the lowest level data access methods. If you want a full read-write API, there
are nine methods you need to implement. They are:

	detail_uri_kwargs

	get_object_list

	obj_get_list

	obj_get

	obj_create

	obj_update

	obj_delete_list

	obj_delete

	rollback

If read-only is all you’re exposing, you can cut that down to four methods to
override.

Using Riak for MessageResource

As an example, we’ll take integrating with Riak [https://pypi.python.org/pypi/riak] (a Dynamo-like NoSQL store)
since it has both a simple API and demonstrate what hooking up to a
non-relational datastore looks like:

import riak

from tastypie import fields
from tastypie.authorization import Authorization
from tastypie.resources import Resource

We need a generic object to shove data in/get data from.
Riak generally just tosses around dictionaries, so we'll lightly
wrap that.
class RiakObject(object):
 def __init__(self, initial=None):
 self.__dict__['_data'] = {}

 if hasattr(initial, 'items'):
 self.__dict__['_data'] = initial

 def __getattr__(self, name):
 return self._data.get(name, None)

 def __setattr__(self, name, value):
 self.__dict__['_data'][name] = value

 def to_dict(self):
 return self._data

class MessageResource(Resource):
 # Just like a Django ``Form`` or ``Model``, we're defining all the
 # fields we're going to handle with the API here.
 uuid = fields.CharField(attribute='uuid')
 user_uuid = fields.CharField(attribute='user_uuid')
 message = fields.CharField(attribute='message')
 created = fields.IntegerField(attribute='created')

 class Meta:
 resource_name = 'riak'
 object_class = RiakObject
 authorization = Authorization()

 # Specific to this resource, just to get the needed Riak bits.
 def _client(self):
 return riak.RiakClient()

 def _bucket(self):
 client = self._client()
 # Note that we're hard-coding the bucket to use. Fine for
 # example purposes, but you'll want to abstract this.
 return client.bucket('messages')

 # The following methods will need overriding regardless of your
 # data source.
 def detail_uri_kwargs(self, bundle_or_obj):
 kwargs = {}

 if isinstance(bundle_or_obj, Bundle):
 kwargs['pk'] = bundle_or_obj.obj.uuid
 else:
 kwargs['pk'] = bundle_or_obj.uuid

 return kwargs

 def get_object_list(self, request):
 query = self._client().add('messages')
 query.map("function(v) { var data = JSON.parse(v.values[0].data); return [[v.key, data]]; }")
 results = []

 for result in query.run():
 new_obj = RiakObject(initial=result[1])
 new_obj.uuid = result[0]
 results.append(new_obj)

 return results

 def obj_get_list(self, bundle, **kwargs):
 # Filtering disabled for brevity...
 return self.get_object_list(bundle.request)

 def obj_get(self, bundle, **kwargs):
 bucket = self._bucket()
 message = bucket.get(kwargs['pk'])
 return RiakObject(initial=message.get_data())

 def obj_create(self, bundle, **kwargs):
 bundle.obj = RiakObject(initial=kwargs)
 bundle = self.full_hydrate(bundle)
 bucket = self._bucket()
 new_message = bucket.new(bundle.obj.uuid, data=bundle.obj.to_dict())
 new_message.store()
 return bundle

 def obj_update(self, bundle, **kwargs):
 return self.obj_create(bundle, **kwargs)

 def obj_delete_list(self, bundle, **kwargs):
 bucket = self._bucket()

 for key in bucket.get_keys():
 obj = bucket.get(key)
 obj.delete()

 def obj_delete(self, bundle, **kwargs):
 bucket = self._bucket()
 obj = bucket.get(kwargs['pk'])
 obj.delete()

 def rollback(self, bundles):
 pass

This represents a full, working, Riak-powered API endpoint. All REST-style
actions (GET/POST/PUT/DELETE) work correctly. The only shortcut taken in
this example was skipping filter-abilty, as adding in the MapReduce bits would
have decreased readability.

All said and done, just nine methods needed overriding, eight of which were
highly specific to how data access is done.

 Tools

Tools

Here are some tools that might help in interacting with the API that Tastypie
provides:

Browser

JSONView

	Firefox - https://addons.mozilla.org/en-US/firefox/addon/jsonview/

	Chrome - https://chrome.google.com/webstore/detail/chklaanhfefbnpoihckbnefhakgolnmc

A plugin (actually two different ones that closely mirror each other) that
nicely reformats JSON data in the browser.

Postman - Rest Client

	Chrome - https://chrome.google.com/webstore/detail/fdmmgilgnpjigdojojpjoooidkmcomcm

A feature rich Chrome extension with JSON and XML support

Extensions

Tastypie-msgpack

https://github.com/stephenmcd/tastypie-msgpack

Adds MsgPack [http://msgpack.org/] support to Tastypie’s serializer.

Python

Slumber

https://pypi.python.org/pypi/slumber/
https://github.com/samgiles/slumber

Slumber is a small Python library that makes it easy to access & work with
APIs. It works for many others, but works especially well with Tastypie.

Hammock

https://github.com/kadirpekel/hammock

Hammock is a fun module lets you deal with rest APIs by converting them into dead simple programmatic APIs.
It uses popular requests module in backyard to provide full-fledged rest experience.

Here is what it looks like:

>>> import hammock
>>> api = hammock.Hammock('http://localhost:8000')
>>> api.users('foo').posts('bar').comments.GET()
<Response [200]>

drest

https://drest.readthedocs.io/

drest is another small Python library. It focuses on extensibility & can also
work with many different API, with an emphasis on Tastypie.

httpie

https://github.com/jkbr/httpie

HTTPie is a command line HTTP client written in Python. Its goal is to make
command-line interaction with web services as human-friendly as possible and
allows much conciser statements compared with curl.

For example for POSTing a JSON object you simply call:

$ http localhost:8000/api/v1/entry/ title=”Foo” body=”Bar” user=”/api/v1/user/1/”

Now compare this with curl:

$ curl –dump-header - -H “Content-Type: application/json” -X POST –data ‘{“title”: “Foo”, “body”: “Bar”, “user”: “/api/v1/user/1/”}’ http://localhost:8000/api/v1/entry/

json.tool

Included with Python, this tool makes reformatting JSON easy. For example:

$ curl http://localhost:8000/api/v1/note/ | python -m json.tool

Will return nicely reformatted data like:

{
 "meta": {
 "total_count": 1
 },
 "objects": [
 {
 "content": "Hello world!",
 "user": "/api/v1/user/1/"
 }
]
}

django-permissionsx

https://github.com/thinkingpotato/django-permissionsx

This package allows using one set of rules both for Django class-based views]
and Tastypie authorization. For example:

articles/permissions.py:

class StaffPermissions(Permissions):
 permissions = P(profile__is_editor=True) | P(profile__is_administrator=True)

articles/views.py:

class ArticleDeleteView(PermissionsViewMixin, DeleteView):
 model = Article
 success_url = reverse_lazy('article_list')
 permissions = StaffPermissions

articles/api.py:

class StaffOnlyAuthorization(TastypieAuthorization):
 permissions_class = StaffPermissions

django-superbulk

https://github.com/thelonecabbage/django-superbulk

This app adds bulk operation support to any Django view-based app, allowing for
better transactional behavior.

Javascript

backbone-tastypie

https://github.com/PaulUithol/backbone-tastypie

A small layer that makes Backbone & Tastypie plan nicely together.

backbone-relational

https://github.com/PaulUithol/Backbone-relational/

Allows Backbone to work with relational data, like the kind of data Tastypie
provides.

 Testing

Testing

Having integrated unit tests that cover your API’s behavior is important, as
it helps provide verification that your API code is still valid & working
correctly with the rest of your application.

Tastypie provides some basic facilities that build on top of Django’s testing [https://docs.djangoproject.com/en/dev/topics/testing/]
support, in the form of a specialized TestApiClient & ResourceTestCaseMixin.

The ResourceTestCaseMixin can be used along with Django’s TestCase or other
Django test classes. It provides quite a few extra assertion methods that are specific
to APIs. Under the hood, it uses the TestApiClient to perform requests properly.

The TestApiClient builds on & exposes an interface similar to that of Django’s
Client. However, under the hood, it hands all the setup needed to construct
a proper request.

Example Usage

The typical use case will primarily consist of adding the ResourceTestCaseMixin
class to an ordinary Django test class & using the built-in assertions to ensure your
API is behaving correctly. For the purposes of this example, we’ll assume the
resource in question looks like:

from tastypie.authentication import BasicAuthentication
from tastypie.resources import ModelResource
from entries.models import Entry

class EntryResource(ModelResource):
 class Meta:
 queryset = Entry.objects.all()
 authentication = BasicAuthentication()

An example usage might look like:

import datetime
from django.contrib.auth.models import User
from django.test import TestCase
from tastypie.test import ResourceTestCaseMixin
from entries.models import Entry

class EntryResourceTest(ResourceTestCaseMixin, TestCase):
 # Use ``fixtures`` & ``urls`` as normal. See Django's ``TestCase``
 # documentation for the gory details.
 fixtures = ['test_entries.json']

 def setUp(self):
 super(EntryResourceTest, self).setUp()

 # Create a user.
 self.username = 'daniel'
 self.password = 'pass'
 self.user = User.objects.create_user(self.username, 'daniel@example.com', self.password)

 # Fetch the ``Entry`` object we'll use in testing.
 # Note that we aren't using PKs because they can change depending
 # on what other tests are running.
 self.entry_1 = Entry.objects.get(slug='first-post')

 # We also build a detail URI, since we will be using it all over.
 # DRY, baby. DRY.
 self.detail_url = '/api/v1/entry/{0}/'.format(self.entry_1.pk)

 # The data we'll send on POST requests. Again, because we'll use it
 # frequently (enough).
 self.post_data = {
 'user': '/api/v1/user/{0}/'.format(self.user.pk),
 'title': 'Second Post!',
 'slug': 'second-post',
 'created': '2012-05-01T22:05:12'
 }

 def get_credentials(self):
 return self.create_basic(username=self.username, password=self.password)

 def test_get_list_unauthenticated(self):
 self.assertHttpUnauthorized(self.api_client.get('/api/v1/entries/', format='json'))

 def test_get_list_json(self):
 resp = self.api_client.get('/api/v1/entries/', format='json', authentication=self.get_credentials())
 self.assertValidJSONResponse(resp)

 # Scope out the data for correctness.
 self.assertEqual(len(self.deserialize(resp)['objects']), 12)
 # Here, we're checking an entire structure for the expected data.
 self.assertEqual(self.deserialize(resp)['objects'][0], {
 'pk': str(self.entry_1.pk),
 'user': '/api/v1/user/{0}/'.format(self.user.pk),
 'title': 'First post',
 'slug': 'first-post',
 'created': '2012-05-01T19:13:42',
 'resource_uri': '/api/v1/entry/{0}/'.format(self.entry_1.pk)
 })

 def test_get_list_xml(self):
 self.assertValidXMLResponse(self.api_client.get('/api/v1/entries/', format='xml', authentication=self.get_credentials()))

 def test_get_detail_unauthenticated(self):
 self.assertHttpUnauthorized(self.api_client.get(self.detail_url, format='json'))

 def test_get_detail_json(self):
 resp = self.api_client.get(self.detail_url, format='json', authentication=self.get_credentials())
 self.assertValidJSONResponse(resp)

 # We use ``assertKeys`` here to just verify the keys, not all the data.
 self.assertKeys(self.deserialize(resp), ['created', 'slug', 'title', 'user'])
 self.assertEqual(self.deserialize(resp)['name'], 'First post')

 def test_get_detail_xml(self):
 self.assertValidXMLResponse(self.api_client.get(self.detail_url, format='xml', authentication=self.get_credentials()))

 def test_post_list_unauthenticated(self):
 self.assertHttpUnauthorized(self.api_client.post('/api/v1/entries/', format='json', data=self.post_data))

 def test_post_list(self):
 # Check how many are there first.
 self.assertEqual(Entry.objects.count(), 5)
 self.assertHttpCreated(self.api_client.post('/api/v1/entries/', format='json', data=self.post_data, authentication=self.get_credentials()))
 # Verify a new one has been added.
 self.assertEqual(Entry.objects.count(), 6)

 def test_put_detail_unauthenticated(self):
 self.assertHttpUnauthorized(self.api_client.put(self.detail_url, format='json', data={}))

 def test_put_detail(self):
 # Grab the current data & modify it slightly.
 original_data = self.deserialize(self.api_client.get(self.detail_url, format='json', authentication=self.get_credentials()))
 new_data = original_data.copy()
 new_data['title'] = 'Updated: First Post'
 new_data['created'] = '2012-05-01T20:06:12'

 self.assertEqual(Entry.objects.count(), 5)
 self.assertHttpAccepted(self.api_client.put(self.detail_url, format='json', data=new_data, authentication=self.get_credentials()))
 # Make sure the count hasn't changed & we did an update.
 self.assertEqual(Entry.objects.count(), 5)
 # Check for updated data.
 self.assertEqual(Entry.objects.get(pk=25).title, 'Updated: First Post')
 self.assertEqual(Entry.objects.get(pk=25).slug, 'first-post')
 self.assertEqual(Entry.objects.get(pk=25).created, datetime.datetime(2012, 3, 1, 13, 6, 12))

 def test_delete_detail_unauthenticated(self):
 self.assertHttpUnauthorized(self.api_client.delete(self.detail_url, format='json'))

 def test_delete_detail(self):
 self.assertEqual(Entry.objects.count(), 5)
 self.assertHttpAccepted(self.api_client.delete(self.detail_url, format='json', authentication=self.get_credentials()))
 self.assertEqual(Entry.objects.count(), 4)

Note that this example doesn’t cover other cases, such as filtering, PUT to
a list endpoint, DELETE to a list endpoint, PATCH support, etc.

ResourceTestCaseMixin API Reference

The ResourceTestCaseMixin exposes the following methods for use. Most are
enhanced assertions or provide API-specific behaviors.

get_credentials

	
ResourceTestCaseMixin.get_credentials(self)

	

A convenience method for the user as a way to shorten up the
often repetitious calls to create the same authentication.

Raises NotImplementedError by default.

Usage:

class MyResourceTestCase(ResourceTestCaseMixin, TestCase):
 def get_credentials(self):
 return self.create_basic('daniel', 'pass')

 # Then the usual tests...

create_basic

	
ResourceTestCaseMixin.create_basic(self, username, password)

	

Creates & returns the HTTP Authorization header for use with BASIC Auth.

create_apikey

	
ResourceTestCaseMixin.create_apikey(self, username, api_key)

	

Creates & returns the HTTP Authorization header for use with ApiKeyAuthentication.

create_digest

	
ResourceTestCaseMixin.create_digest(self, username, api_key, method, uri)

	

Creates & returns the HTTP Authorization header for use with Digest Auth.

create_oauth

	
ResourceTestCaseMixin.create_oauth(self, user)

	

Creates & returns the HTTP Authorization header for use with Oauth.

assertHttpOK

	
ResourceTestCaseMixin.assertHttpOK(self, resp)

	

Ensures the response is returning a HTTP 200.

assertHttpCreated

	
ResourceTestCaseMixin.assertHttpCreated(self, resp)

	

Ensures the response is returning a HTTP 201.

assertHttpAccepted

	
ResourceTestCaseMixin.assertHttpAccepted(self, resp)

	

Ensures the response is returning either a HTTP 202 or a HTTP 204.

assertHttpMultipleChoices

	
ResourceTestCaseMixin.assertHttpMultipleChoices(self, resp)

	

Ensures the response is returning a HTTP 300.

assertHttpSeeOther

	
ResourceTestCaseMixin.assertHttpSeeOther(self, resp)

	

Ensures the response is returning a HTTP 303.

assertHttpNotModified

	
ResourceTestCaseMixin.assertHttpNotModified(self, resp)

	

Ensures the response is returning a HTTP 304.

assertHttpBadRequest

	
ResourceTestCaseMixin.assertHttpBadRequest(self, resp)

	

Ensures the response is returning a HTTP 400.

assertHttpUnauthorized

	
ResourceTestCaseMixin.assertHttpUnauthorized(self, resp)

	

Ensures the response is returning a HTTP 401.

assertHttpForbidden

	
ResourceTestCaseMixin.assertHttpForbidden(self, resp)

	

Ensures the response is returning a HTTP 403.

assertHttpNotFound

	
ResourceTestCaseMixin.assertHttpNotFound(self, resp)

	

Ensures the response is returning a HTTP 404.

assertHttpMethodNotAllowed

	
ResourceTestCaseMixin.assertHttpMethodNotAllowed(self, resp)

	

Ensures the response is returning a HTTP 405.

assertHttpConflict

	
ResourceTestCaseMixin.assertHttpConflict(self, resp)

	

Ensures the response is returning a HTTP 409.

assertHttpGone

	
ResourceTestCaseMixin.assertHttpGone(self, resp)

	

Ensures the response is returning a HTTP 410.

assertHttpTooManyRequests

	
ResourceTestCaseMixin.assertHttpTooManyRequests(self, resp)

	

Ensures the response is returning a HTTP 429.

assertHttpApplicationError

	
ResourceTestCaseMixin.assertHttpApplicationError(self, resp)

	

Ensures the response is returning a HTTP 500.

assertHttpNotImplemented

	
ResourceTestCaseMixin.assertHttpNotImplemented(self, resp)

	

Ensures the response is returning a HTTP 501.

assertValidJSON

	
ResourceTestCaseMixin.assertValidJSON(self, data)

	

Given the provided data as a string, ensures that it is valid JSON &
can be loaded properly.

assertValidXML

	
ResourceTestCaseMixin.assertValidXML(self, data)

	

Given the provided data as a string, ensures that it is valid XML &
can be loaded properly.

assertValidYAML

	
ResourceTestCaseMixin.assertValidYAML(self, data)

	

Given the provided data as a string, ensures that it is valid YAML &
can be loaded properly.

assertValidPlist

	
ResourceTestCaseMixin.assertValidPlist(self, data)

	

Given the provided data as a string, ensures that it is valid binary plist &
can be loaded properly.

assertValidJSONResponse

	
ResourceTestCaseMixin.assertValidJSONResponse(self, resp)

	

Given a HttpResponse coming back from using the client, assert that
you get back:

	An HTTP 200

	The correct content-type (application/json)

	The content is valid JSON

assertValidXMLResponse

	
ResourceTestCaseMixin.assertValidXMLResponse(self, resp)

	

Given a HttpResponse coming back from using the client, assert that
you get back:

	An HTTP 200

	The correct content-type (application/xml)

	The content is valid XML

assertValidYAMLResponse

	
ResourceTestCaseMixin.assertValidYAMLResponse(self, resp)

	

Given a HttpResponse coming back from using the client, assert that
you get back:

	An HTTP 200

	The correct content-type (text/yaml)

	The content is valid YAML

assertValidPlistResponse

	
ResourceTestCaseMixin.assertValidPlistResponse(self, resp)

	

Given a HttpResponse coming back from using the client, assert that
you get back:

	An HTTP 200

	The correct content-type (application/x-plist)

	The content is valid binary plist data

deserialize

	
ResourceTestCaseMixin.deserialize(self, resp)

	

Given a HttpResponse coming back from using the client, this method
checks the Content-Type header & attempts to deserialize the data based on
that.

It returns a Python datastructure (typically a dict) of the serialized data.

serialize

	
ResourceTestCaseMixin.serialize(self, data, format='application/json')

	

Given a Python datastructure (typically a dict) & a desired content-type,
this method will return a serialized string of that data.

assertKeys

	
ResourceTestCaseMixin.assertKeys(self, data, expected)

	

This method ensures that the keys of the data match up to the keys of
expected.

It covers the (extremely) common case where you want to make sure the keys of
a response match up to what is expected. This is typically less fragile than
testing the full structure, which can be prone to data changes.

ResourceTestCase API Reference

ResourceTestCase is deprecated and will be removed by v1.0.0.

class MyTest(ResourceTestCase) is equivalent to
class MyTest(ResourceTestCaseMixin, TestCase).

TestApiClient API Reference

The TestApiClient simulates a HTTP client making calls to the API. It’s
important to note that it uses Django’s testing infrastructure, so it’s not
making actual calls against a webserver.

__init__

	
TestApiClient.__init__(self, serializer=None)

	

Sets up a fresh TestApiClient instance.

If you are employing a custom serializer, you can pass the class to the
serializer= kwarg.

get_content_type

	
TestApiClient.get_content_type(self, short_format)

	

Given a short name (such as json or xml), returns the full content-type
for it (application/json or application/xml in this case).

get

	
TestApiClient.get(self, uri, format='json', data=None, authentication=None, **kwargs)

	

Performs a simulated GET request to the provided URI.

Optionally accepts a data kwarg, which in the case of GET, lets you
send along GET parameters. This is useful when testing filtering or other
things that read off the GET params. Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.get('/api/v1/entry/1/', data={'format': 'json', 'title__startswith': 'a', 'limit': 20, 'offset': 60})

Optionally accepts an authentication kwarg, which should be an HTTP header
with the correct authentication data already setup.

All other **kwargs passed in get passed through to the Django
TestClient. See https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
for details.

post

	
TestApiClient.post(self, uri, format='json', data=None, authentication=None, **kwargs)

	

Performs a simulated POST request to the provided URI.

Optionally accepts a data kwarg. Unlike GET, in POST the
data gets serialized & sent as the body instead of becoming part of the URI.
Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.post('/api/v1/entry/', data={
 'created': '2012-05-01T20:02:36',
 'slug': 'another-post',
 'title': 'Another Post',
 'user': '/api/v1/user/1/',
})

Optionally accepts an authentication kwarg, which should be an HTTP header
with the correct authentication data already setup.

All other **kwargs passed in get passed through to the Django
TestClient. See https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
for details.

put

	
TestApiClient.put(self, uri, format='json', data=None, authentication=None, **kwargs)

	

Performs a simulated PUT request to the provided URI.

Optionally accepts a data kwarg. Unlike GET, in PUT the
data gets serialized & sent as the body instead of becoming part of the URI.
Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.put('/api/v1/entry/1/', data={
 'created': '2012-05-01T20:02:36',
 'slug': 'another-post',
 'title': 'Another Post',
 'user': '/api/v1/user/1/',
})

Optionally accepts an authentication kwarg, which should be an HTTP header
with the correct authentication data already setup.

All other **kwargs passed in get passed through to the Django
TestClient. See https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
for details.

patch

	
TestApiClient.patch(self, uri, format='json', data=None, authentication=None, **kwargs)

	

Performs a simulated PATCH request to the provided URI.

Optionally accepts a data kwarg. Unlike GET, in PATCH the
data gets serialized & sent as the body instead of becoming part of the URI.
Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.patch('/api/v1/entry/1/', data={
 'created': '2012-05-01T20:02:36',
 'slug': 'another-post',
 'title': 'Another Post',
 'user': '/api/v1/user/1/',
})

Optionally accepts an authentication kwarg, which should be an HTTP header
with the correct authentication data already setup.

All other **kwargs passed in get passed through to the Django
TestClient. See https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
for details.

delete

	
TestApiClient.delete(self, uri, format='json', data=None, authentication=None, **kwargs)

	

Performs a simulated DELETE request to the provided URI.

Optionally accepts a data kwarg, which in the case of DELETE, lets you
send along DELETE parameters. This is useful when testing filtering or other
things that read off the DELETE params. Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.delete('/api/v1/entry/1/', data={'format': 'json'})

Optionally accepts an authentication kwarg, which should be an HTTP header
with the correct authentication data already setup.

All other **kwargs passed in get passed through to the Django
TestClient. See https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
for details.

 Compatibility Notes

Compatibility Notes

Tastypie does its best to be a good third-party app, trying to interoperate
with the widest range of Django environments it can. However, there are times
where certain things aren’t possible. We’ll do our best to document them here.

ApiKey Database Index

When the ApiKey model was added to Tastypie, an index was lacking on the
key field. This was the case until the v0.9.12 release. The model was
updated & a migration was added (0002_add_apikey_index.py). However, due
to the way MySQL works & the way Django generates index names, this migration
would fail miserably on many MySQL installs.

If you are using MySQL & the ApiKey authentication class, you may need to
manually add an index for the the ApiKey.key field. Something to the effect
of:

BEGIN; -- LOLMySQL
CREATE INDEX tastypie_apikey_key_index ON tastypie_apikey (`key`);
COMMIT;

 Python 3 Support

Python 3 Support

As of Tastypie v0.10.0, it has been ported to support both Python 2 & Python 3
within the same codebase. This builds on top of what six [http://pythonhosted.org/six/] & Django [https://docs.djangoproject.com/en/dev/topics/python3/#str-and-unicode-methods] provide.

No changes are required for anyone running an existing Tastypie
installation. The API is completely backward-compatible, so you should be able
to run your existing software without modification.

All tests pass under both Python 2 & 3.

Incompatibilities

Oauth Is Unsupported

Tastypie was depending on several Oauth libraries for that authentication
mechanism. Unfortunately, none of them have been ported to Python 3. They’re
still usable from Python 2, but that will be blocked until the underlying
libraries port (or an alternative can be found).

Changed Requirements

Several requirements have changed under Python 3 (mostly due to unofficial
ports). They are:

	python3-digest instead of python-digest

	python-mimeparse instead of mimeparse

Notes

Request/Response Bodies

For explicitness, Django on Python 3 reads request bodies & sends response
bodies as binary data. This requires an explicit .decode('utf-8') that
was not required (but works fine) under Python 2. If you’re sending or reading
the bodies from Python, you’ll need to keep this in mind.

Testing

If you were testing things such as the XML/JSON generated by a given
response, under Python 3.3.2+,
hash randomization [http://docs.python.org/3/whatsnew/3.3.html#builtin-functions-and-types] is in effect, which means that the ordering of
dictionaries is no longer consistent, even on the same platform.

To mitigate this, Tastypie now tries to ensure that serialized data is sorted
alphabetically. So if you were making string assertions, you’ll need to update
them for the new payloads.

 Resources

Resources

In terms of a REST-style architecture, a “resource” is a collection of similar
data. This data could be a table of a database, a collection of other resources
or a similar form of data storage. In Tastypie, these resources are generally
intermediaries between the end user & objects, usually Django models. As such,
Resource (and its model-specific twin ModelResource) form the heart of
Tastypie’s functionality.

Quick Start

A sample resource definition might look something like:

from django.contrib.auth.models import User
from tastypie import fields
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource, ALL, ALL_WITH_RELATIONS
from myapp.models import Entry

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']

class EntryResource(ModelResource):
 user = fields.ForeignKey(UserResource, 'user')

 class Meta:
 queryset = Entry.objects.all()
 list_allowed_methods = ['get', 'post']
 detail_allowed_methods = ['get', 'post', 'put', 'delete']
 resource_name = 'myapp/entry'
 authorization = DjangoAuthorization()
 filtering = {
 'slug': ALL,
 'user': ALL_WITH_RELATIONS,
 'created': ['exact', 'range', 'gt', 'gte', 'lt', 'lte'],
 }

Why Class-Based?

Using class-based resources make it easier to extend/modify the code to meet
your needs. APIs are rarely a one-size-fits-all problem space, so Tastypie
tries to get the fundamentals right and provide you with enough hooks to
customize things to work your way.

As is standard, this raises potential problems for thread-safety. Tastypie has
been designed to minimize the possibility of data “leaking” between threads.
This does however sometimes introduce some small complexities & you should be
careful not to store state on the instances if you’re going to be using the
code in a threaded environment.

Why Resource vs. ModelResource?

Make no mistake that Django models are far and away the most popular source of
data. However, in practice, there are many times where the ORM isn’t the data
source. Hooking up things like a NoSQL store (see Using Tastypie With Non-ORM Data Sources),
a search solution like Haystack or even managed filesystem data are all good
use cases for Resource knowing nothing about the ORM.

Flow Through The Request/Response Cycle

Tastypie can be thought of as a set of class-based views that provide the API
functionality. As such, many part of the request/response cycle are standard
Django behaviors. For instance, all routing/middleware/response-handling aspects
are the same as a typical Django app. Where it differs is in the view itself.

As an example, we’ll walk through what a GET request to a list endpoint (say
/api/v1/user/?format=json) looks like:

	The Resource.urls are checked by Django’s url resolvers.

	On a match for the list view, Resource.wrap_view('dispatch_list') is
called. wrap_view provides basic error handling & allows for returning
serialized errors.

	Because dispatch_list was passed to wrap_view,
Resource.dispatch_list is called next. This is a thin wrapper around
Resource.dispatch.

	dispatch does a bunch of heavy lifting. It ensures:

	the requested HTTP method is in allowed_methods (method_check),

	the class has a method that can handle the request (get_list),

	the user is authenticated (is_authenticated),

	& the user has not exceeded their throttle (throttle_check).

At this point, dispatch actually calls the requested method (get_list).

	get_list does the actual work of the API. It does:

	A fetch of the available objects via Resource.obj_get_list. In the case
of ModelResource, this builds the ORM filters to apply
(ModelResource.build_filters). It then gets the QuerySet via
ModelResource.get_object_list (which performs
Resource.authorized_read_list to possibly limit the set the user
can work with) and applies the built filters to it.

	It then sorts the objects based on user input
(ModelResource.apply_sorting).

	Then it paginates the results using the supplied Paginator & pulls out
the data to be serialized.

	The objects in the page have full_dehydrate applied to each of them,
causing Tastypie to translate the raw object data into the fields the
endpoint supports.

	Finally, it calls Resource.create_response.

	create_response is a shortcut method that:

	Determines the desired response format (Resource.determine_format),

	Serializes the data given to it in the proper format,

	And returns a Django HttpResponse (200 OK) with the serialized data.

	We bubble back up the call stack to dispatch. The last thing dispatch
does is potentially store that a request occurred for future throttling
(Resource.log_throttled_access) then either returns the HttpResponse
or wraps whatever data came back in a response (so Django doesn’t freak out).

Processing on other endpoints or using the other HTTP methods results in a
similar cycle, usually differing only in what “actual work” method gets called
(which follows the format of “<http_method>_<list_or_detail>”). In the case
of POST/PUT, the hydrate cycle additionally takes place and is used to take
the user data & convert it to raw data for storage.

Why Resource URIs?

Resource URIs play a heavy role in how Tastypie delivers data. This can seem
very different from other solutions which simply inline related data. Though
Tastypie can inline data like that (using full=True on the field with the
relation), the default is to provide URIs.

URIs are useful because it results in smaller payloads, letting you fetch only
the data that is important to you. You can imagine an instance where an object
has thousands of related items that you may not be interested in.

URIs are also very cache-able, because the data at each endpoint is less likely
to frequently change.

And URIs encourage proper use of each endpoint to display the data that endpoint
covers.

Ideology aside, you should use whatever suits you. If you prefer fewer requests
& fewer endpoints, use of full=True is available, but be aware of the
consequences of each approach.

Accessing The Current Request

Being able to change behavior based on the current request is a very common
need. Virtually anywhere within Resource/ModelResource, if a bundle is
available, you can access it using bundle.request. This is useful for
altering querysets, ensuring headers are present, etc.

Most methods you may need to override/extend should get a bundle passed to
them.

If you’re using the Resource/ModelResource directly, with no request
available, an empty Request will be supplied instead. If this is a common
pattern/usage in your code, you’ll want to accommodate for data that potentially
isn’t there.

Advanced Data Preparation

Not all data can be easily pulled off an object/model attribute. And sometimes,
you (or the client) may need to send data that doesn’t neatly fit back into the
data model on the server side. For this, Tastypie has the “dehydrate/hydrate”
cycle.

The Dehydrate Cycle

Tastypie uses a “dehydrate” cycle to prepare data for serialization, which is
to say that it takes the raw, potentially complicated data model & turns it
into a (generally simpler) processed data structure for client consumption.
This usually means taking a complex data object & turning it into a dictionary
of simple data types.

Broadly speaking, this takes the bundle.obj instance & builds
bundle.data, which is what is actually serialized.

The cycle looks like:

	Put the data model into a Bundle instance, which is then passed through
the various methods.

	Run through all fields on the Resource, letting each field
perform its own dehydrate method on the bundle.

	While processing each field, look for a dehydrate_<fieldname> method on
the Resource. If it’s present, call it with the bundle.

	Finally, after all fields are processed, if the dehydrate method is
present on the Resource, it is called & given the entire bundle.

The goal of this cycle is to populate the bundle.data dictionary with data
suitable for serialization. With the exception of the alter_* methods (as
hooks to manipulate the overall structure), this cycle controls what is
actually handed off to be serialized & sent to the client.

Per-field dehydrate

Each field (even custom ApiField subclasses) has its own dehydrate
method. If it knows how to access data (say, given the attribute kwarg), it
will attempt to populate values itself.

The return value is put in the bundle.data dictionary (by the Resource)
with the fieldname as the key.

dehydrate_FOO

Since not all data may be ready for consumption based on just attribute access
(or may require an advanced lookup/calculation), this hook enables you to fill
in data or massage whatever the field generated.

Note

The FOO here is not literal. Instead, it is a placeholder that should be
replaced with the fieldname in question.

 Bundles

Bundles

What Are Bundles?

Bundles are a small abstraction that allow Tastypie to pass data between
resources. This allows us not to depend on passing request to every single
method (especially in places where this would be overkill). It also allows
resources to work with data coming into the application paired together with
an unsaved instance of the object in question. Finally, it aids in keeping
Tastypie more thread-safe.

Think of it as package of user data & an object instance (either of which are
optionally present).

Attributes

All data within a bundle can be optional, especially depending on how it’s
being used. If you write custom code using Bundle, make sure appropriate
guards are in place.

obj

Either a Python object or None.

Usually a Django model, though it may/may not have been saved already.

data

Always a plain Python dictionary of data. If not provided, it will be empty.

request

Either the Django request that’s part of the issued request or an empty
HttpRequest if it wasn’t provided.

related_obj

Either another “parent” Python object or None.

Useful when handling one-to-many relations. Used in conjunction with
related_name.

related_name

Either a Python string name of an attribute or None.

Useful when handling one-to-many relations. Used in conjunction with
related_obj.

 Api

Api

In terms of a REST-style architecture, the “api” is a collection of resources.
In Tastypie, the Api gathers together the Resources & provides a nice
way to use them as a set. It handles many of the URLconf details for you,
provides a helpful “top-level” view to show what endpoints are available &
some extra URL resolution juice.

Quick Start

A sample api definition might look something like (usually located in a
URLconf):

from django.conf.urls import url, include
from tastypie.api import Api
from myapp.api.resources import UserResource, EntryResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource())
v1_api.register(EntryResource())

Standard bits...
urlpatterns = [
 url(r'^api/', include(v1_api.urls)),
]

For namespaced urls see Namespaces

Api Methods

Implements a registry to tie together the various resources that make up
an API.

Especially useful for navigation, HATEOAS and for providing multiple
versions of your API.

Optionally supplying api_name allows you to name the API. Generally,
this is done with version numbers (i.e. v1, v2, etc.) but can
be named any string.

register

	
Api.register(self, resource, canonical=True):

	

Registers an instance of a Resource subclass with the API.

Optionally accept a canonical argument, which indicates that the
resource being registered is the canonical variant. Defaults to
True.

unregister

	
Api.unregister(self, resource_name):

	

If present, unregisters a resource from the API.

canonical_resource_for

	
Api.canonical_resource_for(self, resource_name):

	

Returns the canonical resource for a given resource_name.

override_urls

	
Api.override_urls(self):

	

Deprecated. Will be removed by v1.0.0. Please use Api.prepend_urls instead.

prepend_urls

	
Api.prepend_urls(self):

	

A hook for adding your own URLs or matching before the default URLs. Useful for
adding custom endpoints or overriding the built-in ones.

Should return a list of individual URLconf lines.

urls

	
Api.urls(self):

	

Property

Provides URLconf details for the Api and all registered
Resources beneath it.

top_level

	
Api.top_level(self, request, api_name=None):

	

A view that returns a serialized list of all resources registers
to the Api. Useful for discovery.

 Resource Fields

Resource Fields

When designing an API, an important component is defining the representation
of the data you’re presenting. Like Django models, you can control the
representation of a Resource using fields. There are a variety of fields
for various types of data.

Quick Start

For the impatient:

from tastypie import fields, utils
from tastypie.resources import Resource
from myapp.api.resources import ProfileResource, NoteResource

class PersonResource(Resource):
 name = fields.CharField(attribute='name')
 age = fields.IntegerField(attribute='years_old', null=True)
 created = fields.DateTimeField(readonly=True, help_text='When the person was created', default=utils.now)
 is_active = fields.BooleanField(default=True)
 profile = fields.ToOneField(ProfileResource, 'profile')
 notes = fields.ToManyField(NoteResource, 'notes', full=True)

Standard Data Fields

All standard data fields have a common base class ApiField which handles
the basic implementation details.

Note

You should not use the ApiField class directly. Please use one of the
subclasses that is more correct for your data.

 Caching

Caching

When adding an API to your site, it’s important to understand that most
consumers of the API will not be people, but instead machines. This means that
the traditional “fetch-read-click” cycle is no longer measured in minutes but
in seconds or milliseconds.

As such, caching is a very important part of the deployment of your API.
Tastypie ships with two classes to make working with caching easier. These
caches store at the object level, reducing access time on the database.

However, it’s worth noting that these do NOT cache serialized representations.
For heavy traffic, we’d encourage the use of a caching proxy, especially
Varnish [http://www.varnish-cache.org/], as it shines under this kind of usage. It’s far faster than Django
views and already neatly handles most situations.

The first section below demonstrates how to cache at the Django level, reducing
the amount of work required to satisfy a request. In many cases your API serves
web browsers or is behind by a caching proxy such as Varnish [http://www.varnish-cache.org/] and it is possible
to set HTTP Cache-Control headers to avoid issuing a request to your application
at all. This is discussed in the HTTP Cache-Control section below.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.cache import SimpleCache
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 cache = SimpleCache(timeout=10)

Caching Options

Tastypie ships with the following Cache classes:

NoCache

The no-op cache option, this does no caching but serves as an api-compatible
plug. Very useful for development.

SimpleCache

This option does basic object caching, attempting to find the object in the
cache & writing the object to the cache. By default, it uses the default
cache backend as configured in the CACHES setting. However, an optional
cache_name parameter can be passed to the constructor to specify a
different backend. For example, if CACHES looks like:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
 'TIMEOUT': 60
 },
 'resources': {
 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
 'TIMEOUT': 60
 }
}

you can configure your resource’s cache_name property like so:

cache = SimpleCache(cache_name='resources', timeout=10)

In this case, the cache used will be the one named, and the default timeout
specified in CACHES['resources'] will be overriden by the timeout
parameter.

Implementing Your Own Cache

Implementing your own Cache class is as simple as subclassing NoCache
and overriding the get & set methods. For example, a json-backed
cache might look like:

import json
from django.conf import settings
from tastypie.cache import NoCache

class JSONCache(NoCache):
 def _load(self):
 data_file = open(settings.TASTYPIE_JSON_CACHE, 'r')
 return json.load(data_file)

 def _save(self, data):
 data_file = open(settings.TASTYPIE_JSON_CACHE, 'w')
 return json.dump(data, data_file)

 def get(self, key):
 data = self._load()
 return data.get(key, None)

 def set(self, key, value, timeout=60):
 data = self._load()
 data[key] = value
 self._save(data)

Note that this is NOT necessarily an optimal solution, but is simply
demonstrating how one might go about implementing your own Cache.

HTTP Cache-Control

The HTTP protocol defines a Cache-Control header, which can be used to tell
clients and intermediaries who is allowed to cache a response and for how long.
Mark Nottingham has a general caching introduction [http://www.mnot.net/cache_docs/] and the Django cache
documentation [https://docs.djangoproject.com/en/dev/topics/cache/#controlling-cache-using-other-headers] describes how to set caching-related headers in your code. The
range of possible options is beyond the scope of this documentation, but it’s
important to know that, by default, Tastypie will prevent responses from being
cached to ensure that clients always receive current information.

To override the default no-cache response, your Resource should ensure
that your cache class implements cache_control. The default
SimpleCache does this by default. It uses the timeout passed to the
initialization as the max-age and s-maxage. By default, it does not
claim to know if the results should be public or privately cached but this can
be changed by passing either a public=True or a private=True to the
initialization of the SimpleClass.

Behind the scenes, the return value from the cache_control method is passed
to the cache_control [https://docs.djangoproject.com/en/dev/topics/cache/?from=olddocs#controlling-cache-using-other-headers] helper provided by Django. If you wish to add your own
methods to it, you can do so by overloading the cache_control method and
modifying the dictionary it returns.:

from tastypie.cache import SimpleCache

class NoTransformCache(SimpleCache):

 def cache_control(self):
 control = super(NoTransformCache, self).cache_control()
 control.update({"no_transform": True})
 return control

HTTP Vary

The HTTP protocol defines a Vary header, which can be used to tell clients
and intermediaries on what headers your response varies. This allows clients to
store a correct response for each type. By default, Tastypie will send the
Vary: Accept header so that a seperate response is cached for each
Content-Type. However, if you wish to change this, simply pass a list to
the varies kwarg of any Cache class.

It is important to note that if a list is passed, Tastypie not automatically
include the Vary: Accept and you should include it as a member of your
list.:

class ExampleResource(Resource):
 class Meta:
 cache = SimpleCache(varies=["Accept", "Cookie"])

 Validation

Validation

Validation allows you to ensure that the data being submitted by the user
is appropriate for storage. This can range from simple type checking on up
to complex validation that compares different fields together.

If the data is valid, an empty dictionary is returned and processing continues
as normal. If the data is invalid, a dictionary of error messages (keys being
the field names, values being a list of error messages) is immediately
returned to the user, serialized in the format they requested.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.validation import Validation
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 validation = Validation()

Validation Options

Tastypie ships with the following Validation classes:

Validation

The no-op validation option, the data submitted is always considered to be
valid.

This is the default class hooked up to Resource/ModelResource.

FormValidation

A more complex form of validation, this class accepts a form_class argument
to its constructor. You supply a Django Form (or ModelForm, though
save will never get called) and Tastypie will verify the data in the
Bundle against the form.

This class DOES NOT alter the data sent, only verifies it. If you
want to alter the data, please use the CleanedDataFormValidation class
instead.

Warning

Data in the bundle must line up with the fieldnames in the Form. If they
do not, you’ll need to either munge the data or change your form.

 Authentication

Authentication

Authentication is the component needed to verify who a
certain user is and to validate their access to the API.

Authentication answers the question “Who is this person?” This usually involves
requiring credentials, such as an API key or username/password or oAuth tokens.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.authentication import BasicAuthentication
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 authentication = BasicAuthentication()

Authentication Options

Tastypie ships with the following Authentication classes:

Authentication

The no-op authentication option, the client is always allowed through. Very
useful for development and read-only APIs.

BasicAuthentication

This authentication scheme uses HTTP Basic Auth to check a user’s credentials.
The username is their django.contrib.auth.models.User username (assuming
it is present) and their password should also correspond to that entry.

Warning

If you’re using Apache & mod_wsgi, you will need to enable
WSGIPassAuthorization On. See this post [http://www.nerdydork.com/basic-authentication-on-mod_wsgi.html] for details.

 Authorization

Authorization

Authorization is the component needed to verify what someone can do with
the resources within an API.

Authorization answers the question “Is permission granted for this user to take
this action?” This usually involves checking permissions such as
Create/Read/Update/Delete access, or putting limits on what data the user
can access.

Usage

Using these classes is simple. Simply provide them (or your own class) as a
Meta option to the Resource in question. For example:

from django.contrib.auth.models import User
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 authorization = DjangoAuthorization()

Authorization Options

Tastypie ships with the following Authorization classes:

Authorization

The no-op authorization option, no permissions checks are performed.

Warning

This is a potentially dangerous option, as it means ANY recognized user
can modify ANY data they encounter in the API. Be careful who you trust.

 Serialization

Serialization

Serialization can be one of the most contentious areas of an API. Everyone
has their own requirements, their own preferred output format & the desire to
have control over what is returned.

As a result, Tastypie ships with a serializer that tries to meet the basic
needs of most use cases, and the flexibility to go outside of that when you
need to.

Usage

Using this class is simple. It is the default option on all Resource
classes unless otherwise specified. The following code is identical to the
defaults but demonstrate how you could use your own serializer:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 serializer = Serializer()

Configuring Allowed Formats

The default Serializer supports the following formats:

	json

	jsonp (Disabled by default)

	xml

	yaml

	plist (see https://bitbucket.org/wooster/biplist)

Not everyone wants to install or support all the serialization options. If you
would like to customize the list of supported formats for your entire site
the TASTYPIE_DEFAULT_FORMATS setting
allows you to set the default format list site-wide.

If you wish to change the format list for a specific resource, you can pass the
list of supported formats using the formats= kwarg. For example, to provide
only JSON & binary plist serialization:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 serializer = Serializer(formats=['json', 'plist'])

Enabling the built-in (but disabled by default) JSONP support looks like:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 serializer = Serializer(formats=['json', 'jsonp', 'xml', 'yaml', 'plist'])

Serialization Security

Deserialization of input from unknown or untrusted sources is an intrinsically
risky endeavor and vulnerabilities are regularly found in popular format
libraries. Tastypie adopts and recommends the following approach:

	Support the minimum required set of formats in your application.
If you do not require a format, it’s much safer to disable it
completely. See TASTYPIE_DEFAULT_FORMATS setting.

	Some parsers offer additional safety check for use with untrusted content.
The standard Tastypie Serializer attempts to be secure by default using
features like PyYAML’s
safe_load [http://pyyaml.org/wiki/PyYAMLDocumentation#LoadingYAML] function
and the defusedxml [https://pypi.python.org/pypi/defusedxml] security wrapper for popular Python XML libraries.

Note

Tastypie’s precautions only apply to the default Serializer. If
you have written your own serializer subclass we strongly recommend that
you review your code to ensure that it uses the same precautions.

If backwards compatibility forces you to load files which require risky
features we strongly recommend enabling those features only for the
necessary resources and making your authorization checks as strict as
possible. The Authentication and Authorization checks happen
before deserialization so, for example, a resource which only allowed
POST or PUT requests to be made by administrators is far less exposed than
a general API open to the unauthenticated internet.

 Throttling

Throttling

Sometimes, the client on the other end may request data too frequently or
you have a business use case that dictates that the client should be limited
to a certain number of requests per hour.

For this, Tastypie includes throttling as a way to limit the number of requests
in a timeframe.

Usage

To specify a throttle, add the Throttle class to the Meta class on the
Resource:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.throttle import BaseThrottle

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 throttle = BaseThrottle(throttle_at=100)

Throttle Options

Each of the Throttle classes accepts the following initialization
arguments:

	throttle_at - the number of requests at which the user should
be throttled. Default is 150 requests.

	timeframe - the length of time (in seconds) in which the user
make up to the throttle_at requests. Default is 3600 seconds (
1 hour).

	expiration - the length of time to retain the times the user
has accessed the api in the cache. Default is 604800 (1 week).

Tastypie ships with the following Throttle classes:

BaseThrottle

The no-op throttle option, this does no throttling but implements much of the
common logic and serves as an api-compatible plug. Very useful for development.

CacheThrottle

This uses just the cache to manage throttling. Fast but prone to cache misses
and/or cache restarts.

CacheDBThrottle

A write-through option that uses the cache first & foremost, but also writes
through to the database to persist access times. Useful for logging client
accesses & with RAM-only caches.

Implementing Your Own Throttle

Writing a Throttle class is not quite as simple as the other components.
There are two important methods, should_be_throttled & accessed. The
should_be_throttled method dictates whether or not the client should be
throttled. The accessed method allows for the recording of the hit to the
API.

An example of a subclass might be:

import random
from tastypie.throttle import BaseThrottle

class RandomThrottle(BaseThrottle):
 def should_be_throttled(self, identifier, **kwargs):
 if random.randint(0, 10) % 2 == 0:
 return True

 return False

 def accessed(self, identifier, **kwargs):
 pass

This throttle class would pick a random number between 0 & 10. If the number is
even, their request is allowed through; otherwise, their request is throttled &
rejected.

Usage with Resource

Using throttling with something like search, requires that you call throttle_check
and log_throttled_access explicitly.

An example of this might be:

from tastypie.throttle import CacheThrottle

class NoteResource(Resource):
 class Meta:
 allowed_methods = ['get']
 resource_name = 'notes'
 throttle = CacheThrottle()

 def prepend_urls(self):
 return [
 url(r"^(?P<resource_name>%s)/search%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_search'), name="api_get_search"),
]

 def search(self, request, **kwargs):
 self.method_check(request, allowed=self.Meta.allowed_methods)
 self.is_authenticated(request)
 self.throttle_check(request)
 self.log_throttled_access(request)

 # Do the query.
 sqs = SearchQuerySet().models(Note).load_all().auto_query(request.GET.get('q', ''))
 paginator = Paginator(sqs, 20)

 try:
 page = paginator.page(int(request.GET.get('page', 1)))
 except InvalidPage:
 raise Http404("Sorry, no results on that page.")

 objects = []

 for result in page.object_list:
 bundle = self.build_bundle(obj=result.object, request=request)
 bundle = self.full_dehydrate(bundle)
 objects.append(bundle)

 object_list = {
 'objects': objects,
 }

 return self.create_response(request, object_list)

 Paginator

Paginator

Similar to Django’s Paginator, Tastypie includes a Paginator object
which limits result sets down to sane amounts for passing to the client.

This is used in place of Django’s Paginator due to the way pagination
works. limit & offset (tastypie) are used in place of page
(Django) so none of the page-related calculations are necessary.

This implementation also provides additional details like the
total_count of resources seen and convenience links to the
previous/next pages of data as available.

Usage

Using this class is simple, but slightly different than the other classes used
by Tastypie. Like the others, you provide the Paginator (or your own
subclass) as a Meta option to the Resource in question. Unlike the
others, you provide the class, NOT an instance. For example:

from django.contrib.auth.models import User
from tastypie.paginator import Paginator
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 resource_name = 'auth/user'
 excludes = ['email', 'password', 'is_superuser']
 # Add it here.
 paginator_class = Paginator

Warning

The default paginator contains the total_count value, which shows how
many objects are in the underlying object list.

Obtaining this data from the database may be inefficient, especially
with large datasets, and unfiltered API requests.

See http://wiki.postgresql.org/wiki/Slow_Counting and
http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL#COUNT.28.2A.29
for reference, on why this may be a problem when using PostgreSQL and
MySQL’s InnoDB engine.

Here’s an example solution to this
problem.

 GeoDjango

GeoDjango

Tastypie features support for GeoDjango! Resources return and accept
GeoJSON [http://geojson.org/geojson-spec.html] (or similarly-formatted
analogs for other formats) and all spatial lookup [https://docs.djangoproject.com/en/dev/ref/contrib/gis/geoquerysets/#spatial-lookups] filters are supported. Distance lookups are not yet supported.

Usage

Here’s an example geographic model for leaving notes in polygonal
regions:

from django.contrib.gis import models

class GeoNote(models.Model):
 content = models.TextField()
 polys = models.MultiPolygonField(null=True, blank=True)

 objects = models.GeoManager()

To define a resource that takes advantage of the geospatial features,
we use tastypie.contrib.gis.resources.ModelResource:

from tastypie.contrib.gis.resources import ModelResource
from tastypie.resources import ALL

class GeoNoteResource(ModelResource):
 class Meta:
 resource_name = 'geonotes'
 queryset = GeoNote.objects.all()

 filtering = {
 'polys': ALL,
 }

Now when we do a GET on our GeoNoteResource we get back GeoJSON in
our response:

{
 "content": "My note content",
 "id": "1",
 "polys": {
 "coordinates": [[[
 [-122.511067, 37.771276], [-122.510037, 37.766390999999999],
 [-122.510037, 37.763812999999999], [-122.456822, 37.765847999999998],
 [-122.45296, 37.766458999999998], [-122.454848, 37.773989999999998],
 [-122.475362, 37.773040000000002], [-122.511067, 37.771276]
]]],
 "type": "MultiPolygon"
 },
 "resource_uri": "/api/v1/geonotes/1/"
}

When updating or creating new resources, simply provide GeoJSON or the
GeoJSON analog for your perferred format.

Filtering

We can filter using any standard GeoDjango spatial lookup [https://docs.djangoproject.com/en/dev/ref/contrib/gis/geoquerysets/#spatial-lookups] filter. Simply provide a GeoJSON (or the analog) as a GET parameter value.

Let’s find all of our GeoNote resources that contain a point inside
of Golden Gate Park [https://sf.localwiki.org/Golden_Gate_Park]:

/api/v1/geonotes/?polys__contains={"type": "Point", "coordinates": [-122.475233, 37.768617]}

Returns:

{
 "meta": {
 "limit": 20, "next": null, "offset": 0, "previous": null, "total_count": 1},
 "objects": [
 {
 "content": "My note content",
 "id": "1",
 "polys": {
 "coordinates": [[[
 [-122.511067, 37.771276], [-122.510037, 37.766390999999999],
 [-122.510037, 37.763812999999999], [-122.456822, 37.765847999999998],
 [-122.45296, 37.766458999999998], [-122.454848, 37.773989999999998],
 [-122.475362, 37.773040000000002], [-122.511067, 37.771276]
]]],
 "type": "MultiPolygon"
 },
 "resource_uri": "/api/geonotes/1/"
 }
]
}

We get back the GeoNote resource defining Golden Gate Park.
Awesome!

 ContentTypes and GenericForeignKeys

ContentTypes and GenericForeignKeys

Content Types [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/] and GenericForeignKeys are for relationships where the model on
one end is not defined by the model’s schema.

If you’re using GenericForeignKeys in django, you can use a
GenericForeignKeyField in Tastypie.

Usage

Here’s an example model with a GenericForeignKey taken from the Django docs:

from django.db import models
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes import generic

class TaggedItem(models.Model):
 tag = models.SlugField()
 content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE)
 object_id = models.PositiveIntegerField()
 content_object = generic.GenericForeignKey('content_type', 'object_id')

 def __unicode__(self):
 return self.tag

A simple ModelResource for this model might look like this:

from tastypie.contrib.contenttypes.fields import GenericForeignKeyField
from tastypie.resources import ModelResource

from .models import Note, Quote, TaggedItem

class QuoteResource(ModelResource):

 class Meta:
 resource_name = 'quotes'
 queryset = Quote.objects.all()

class NoteResource(ModelResource):

 class Meta:
 resource_name = 'notes'
 queryset = Note.objects.all()

class TaggedItemResource(ModelResource):
 content_object = GenericForeignKeyField({
 Note: NoteResource,
 Quote: QuoteResource
 }, 'content_object')

 class Meta:
 resource_name = 'tagged_items'
 queryset = TaggedItem.objects.all()

A ModelResource that is to be used as a relation to a GenericForeignKeyField
must also be registered to the Api instance defined in your URLconf in order
to provide a reverse uri for lookups.

Like ToOneField, you must add your GenericForeignKey attribute to your
ModelResource definition. It will not be added automatically like most other
field or attribute types. When you define it, you must also define the other
models and match them to their resources in a dictionary, and pass that as the
first argument, the second argument is the name of the attribute on the model
that holds the GenericForeignKey.

 Namespaces

Namespaces

For various reasons you might want to deploy your API under a namespaced URL path. To support that tastypie includes NamespacedApi and NamespacedModelResource.

A sample definition of your API in this case would be something like:

from django.conf.urls import url, include
from tastypie.api import NamespacedApi
from my_application.api.resources import NamespacedUserResource

api = NamespacedApi(api_name='v1', urlconf_namespace='special')
api.register(NamespacedUserResource())

urlpatterns = [
 url(r'^api/', include(api.urls, namespace='special')),
]

And your model resource:

from django.contrib.auth.models import User
from tastypie.resources import NamespacedModelResource
from tastypie.authorization import Authorization

class NamespacedUserResource(NamespacedModelResource):
 class Meta:
 resource_name = 'users'
 queryset = User.objects.all()
 authorization = Authorization()

 Tastypie Cookbook

Tastypie Cookbook

Creating a Full OAuth 2.0 API

It is common to use django to provision OAuth 2.0 tokens for users and then
have Tasty Pie use these tokens to authenticate users to the API. Follow this tutorial [http://ianalexandr.com/blog/building-a-true-oauth-20-api-with-django-and-tasty-pie.html] and use this custom authentication class [https://github.com/ianalexander/django-oauth2-tastypie] to enable
OAuth 2.0 authentication with Tasty Pie.

api.py
from tastypie import fields
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource, Resource
from myapp.models import Poll, Choice
from authentication import OAuth20Authentication

class ChoiceResource(ModelResource):
 class Meta:
 queryset = Choice.objects.all()
 resource_name = 'choice'
 authorization = DjangoAuthorization()
 authentication = OAuth20Authentication()

class PollResource(ModelResource):
 choices = fields.ToManyField(ChoiceResource, 'choice_set', full=True)

 class Meta:
 queryset = Poll.objects.all()
 resource_name = 'poll'
 authorization = DjangoAuthorization()
 authentication = OAuth20Authentication()

Adding Custom Values

You might encounter cases where you wish to include additional data in a
response which is not obtained from a field or method on your model. You can
easily extend the dehydrate() method to
provide additional values:

from myapp.models import MyModel

class MyModelResource(Resource):
 class Meta:
 queryset = MyModel.objects.all()

 def dehydrate(self, bundle):
 bundle.data['custom_field'] = "Whatever you want"
 return bundle

Per-Request Alterations To The Queryset

A common pattern is needing to limit a queryset by something that changes
per-request, for instance the date/time. You can accomplish this by lightly
modifying get_object_list:

from django.utils import timezone
from myapp.models import MyModel

class MyModelResource(ModelResource):
 class Meta:
 queryset = MyModel.objects.all()

 def get_object_list(self, request):
 return super(MyModelResource, self).get_object_list(request).filter(start_date__gte=timezone.now())

Using Your Resource In Regular Views

In addition to using your resource classes to power the API, you can also use
them to write other parts of your application, such as your views. For
instance, if you wanted to encode user information in the page for some
Javascript’s use, you could do the following. In this case, user_json will
not include a valid resource_uri:

views.py
from django.shortcuts import render
from myapp.api.resources import UserResource

def user_detail(request, username):
 res = UserResource()
 request_bundle = res.build_bundle(request=request)
 user = res.obj_get(request_bundle, username=username)

 # Other things get prepped to go into the context then...

 user_bundle = res.build_bundle(request=request, obj=user)
 user_json = res.serialize(None, res.full_dehydrate(user_bundle), "application/json")

 return render(request, "myapp/user_detail.html", {
 # Other things here.
 "user_json": user_json,
 })

To include a valid resource_uri, the resource must be associated
with an tastypie.Api instance, as below:

urls.py
from tastypie.api import Api
from myapp.api.resources import UserResource

my_api = Api(api_name='v1')
my_api.register(UserResource())

views.py
from myapp.urls import my_api

def user_detail(request, username):
 res = my_api.canonical_resource_for('user')
 # continue as above...

Alternatively, to get a valid resource_uri you may pass in the api_name
parameter directly to the Resource:

views.py
from django.shortcuts import render
from myapp.api.resources import UserResource

def user_detail(request, username):
 res = UserResource(api_name='v1')
 # continue as above...

Example of getting a list of users:

def user_list(request):
 res = UserResource()
 request_bundle = res.build_bundle(request=request)
 queryset = res.obj_get_list(request_bundle)

 bundles = []
 for obj in queryset:
 bundle = res.build_bundle(obj=obj, request=request)
 bundles.append(res.full_dehydrate(bundle, for_list=True))

 list_json = res.serialize(None, bundles, "application/json")

 return render(request, 'myapp/user_list.html', {
 # Other things here.
 "list_json": list_json,
 })

Then in template you could convert JSON into JavaScript object:

<script>
 var json = "{{ list_json|escapejs }}";
 var users = JSON.parse(json);
</script>

Using Non-PK Data For Your URLs

By convention, ModelResources usually expose the detail endpoints utilizing
the primary key of the Model they represent. However, this is not a strict
requirement. Each URL can take other named URLconf parameters that can be used
for the lookup.

For example, if you want to expose User resources by username, you can do
something like the following:

myapp/api/resources.py
from django.conf.urls import url
from django.contrib.auth.models import User

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()
 detail_uri_name = 'username'

 def prepend_urls(self):
 return [
 url(r"^(?P<resource_name>%s)/(?P<username>[\w\d_.-]+)/$" % self._meta.resource_name, self.wrap_view('dispatch_detail'), name="api_dispatch_detail"),
]

The added URLconf matches before the standard URLconf included by default &
matches on the username provided in the URL.

Another alternative approach is to override the dispatch method:

myapp/api/resources.py
from myapp.models import MyModel

class MyModelResource(ModelResource):
 user = fields.ForeignKey(UserResource, 'user')

 class Meta:
 queryset = MyModel.objects.all()
 resource_name = 'mymodel'

 def dispatch(self, request_type, request, **kwargs):
 username = kwargs.pop('username')
 kwargs['user'] = get_object_or_404(User, username=username)
 return super(MyModelResource, self).dispatch(request_type, request, **kwargs)

urls.py
from django.conf.urls import url, include

mymodel_resource = MyModelResource()

urlpatterns = [
 # The normal jazz here, then...
 url(r'^api/(?P<username>\w+)/', include(mymodel_resource.urls)),
]

Nested Resources

You can also do “nested resources” (resources within another related resource)
by lightly overriding the prepend_urls method & adding on a new method to
handle the children:

class ChildResource(ModelResource):
 pass

from tastypie.utils import trailing_slash

class ParentResource(ModelResource):
 children = fields.ToManyField(ChildResource, 'children')

 def prepend_urls(self):
 return [
 url(r"^(?P<resource_name>%s)/(?P<pk>\w[\w/-]*)/children%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_children'), name="api_get_children"),
]

 def get_children(self, request, **kwargs):
 try:
 bundle = self.build_bundle(data={'pk': kwargs['pk']}, request=request)
 obj = self.cached_obj_get(bundle=bundle, **self.remove_api_resource_names(kwargs))
 except ObjectDoesNotExist:
 return HttpGone()
 except MultipleObjectsReturned:
 return HttpMultipleChoices("More than one resource is found at this URI.")

 child_resource = ChildResource()
 return child_resource.get_list(request, parent_id=obj.pk)

Adding Search Functionality

Another common request is being able to integrate search functionality. This
approach uses Haystack [http://haystacksearch.org/], though you could hook it up to any search technology.
We leave the CRUD methods of the resource alone, choosing to add a new endpoint
at /api/v1/notes/search/:

from django.conf.urls import url, include
from django.core.paginator import Paginator, InvalidPage
from django.http import Http404
from haystack.query import SearchQuerySet
from tastypie.resources import ModelResource
from tastypie.utils import trailing_slash
from notes.models import Note

class NoteResource(ModelResource):
 class Meta:
 queryset = Note.objects.all()
 resource_name = 'notes'

 def prepend_urls(self):
 return [
 url(r"^(?P<resource_name>%s)/search%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_search'), name="api_get_search"),
]

 def get_search(self, request, **kwargs):
 self.method_check(request, allowed=['get'])
 self.is_authenticated(request)
 self.throttle_check(request)

 # Do the query.
 sqs = SearchQuerySet().models(Note).load_all().auto_query(request.GET.get('q', ''))
 paginator = self._meta.paginator_class(request.GET, sqs,
 resource_uri=self.get_resource_uri(), limit=self._meta.limit,
 max_limit=self._meta.max_limit, collection_name=self._meta.collection_name)

 to_be_serialized = paginator.page()

 bundles = [self.build_bundle(obj=result.object, request=request) for result in to_be_serialized['objects']]
 to_be_serialized['objects'] = [self.full_dehydrate(bundle) for bundle in bundles]
 to_be_serialized = self.alter_list_data_to_serialize(request, to_be_serialized)
 return self.create_response(request, to_be_serialized)

Creating per-user resources

One might want to create an API which will require every user to authenticate
and every user will be working only with objects associated with them. Let’s see
how to implement it for two basic operations: listing and creation of an object.

For listing we want to list only objects for which user field matches
request.user. This could be done by applying a filter in the
authorized_read_list method of your resource.

For creating we’d have to wrap obj_create method of ModelResource. Then the
resulting code will look something like:

myapp/api/resources.py
from tastypie.authentication import ApiKeyAuthentication
from tastypie.authorization import Authorization

class MyModelResource(ModelResource):
 class Meta:
 queryset = MyModel.objects.all()
 resource_name = 'mymodel'
 list_allowed_methods = ['get', 'post']
 authentication = ApiKeyAuthentication()
 authorization = Authorization()

 def obj_create(self, bundle, **kwargs):
 return super(MyModelResource, self).obj_create(bundle, user=bundle.request.user)

 def authorized_read_list(self, object_list, bundle):
 return object_list.filter(user=bundle.request.user)

camelCase JSON Serialization

The convention in the world of Javascript has standardized on camelCase,
where Tastypie uses underscore syntax, which can lead to “ugly” looking
code in Javascript. You can create a custom serializer that emits
values in camelCase instead:

import re
import json
from tastypie.serializers import Serializer

class CamelCaseJSONSerializer(Serializer):
 formats = ['json']
 content_types = {
 'json': 'application/json',
 }

 def to_json(self, data, options=None):
 # Changes underscore_separated names to camelCase names to go from python convention to javacsript convention
 data = self.to_simple(data, options)

 def underscoreToCamel(match):
 return match.group()[0] + match.group()[2].upper()

 def camelize(data):
 if isinstance(data, dict):
 new_dict = {}
 for key, value in data.items():
 new_key = re.sub(r"[a-z]_[a-z]", underscoreToCamel, key)
 new_dict[new_key] = camelize(value)
 return new_dict
 if isinstance(data, list):
 for i, v in enumerate(data):
 data[i] = camelize(v)
 return data
 return data

 camelized_data = camelize(data)

 return json.dumps(camelized_data, sort_keys=True)

 def from_json(self, content):
 # Changes camelCase names to underscore_separated names to go from javascript convention to python convention
 data = json.loads(content)

 def camelToUnderscore(match):
 return match.group()[0] + "_" + match.group()[1].lower()

 def underscorize(data):
 if isinstance(data, dict):
 new_dict = {}
 for key, value in data.items():
 new_key = re.sub(r"[a-z][A-Z]", camelToUnderscore, key)
 new_dict[new_key] = underscorize(value)
 return new_dict
 if isinstance(data, list):
 for i, v in enumerate(data):
 data[i] = underscorize(v)
 return data
 return data

 underscored_data = underscorize(data)

 return underscored_data

Pretty-printed JSON Serialization

By default, Tastypie outputs JSON with no indentation or newlines (equivalent to calling
json.dumps() with indent set to None). You can override this
behavior in a custom serializer:

import json
from django.core.serializers.json import DjangoJSONEncoder
from tastypie.serializers import Serializer

class PrettyJSONSerializer(Serializer):
 json_indent = 2

 def to_json(self, data, options=None):
 options = options or {}
 data = self.to_simple(data, options)
 return json.dumps(data, cls=DjangoJSONEncoder,
 sort_keys=True, ensure_ascii=False, indent=self.json_indent)

Determining format via URL

Sometimes it’s required to allow selecting the response format by
specifying it in the API URL, for example /api/v1/users.json instead
of /api/v1/users/?format=json. The following snippet allows that kind
of syntax additional to the default URL scheme:

myapp/api/resources.py

from django.contrib.auth.models import User
Piggy-back on internal csrf_exempt existence handling
from tastypie.resources import csrf_exempt

class UserResource(ModelResource):
 class Meta:
 queryset = User.objects.all()

 def prepend_urls(self):
 """
 Returns a URL scheme based on the default scheme to specify
 the response format as a file extension, e.g. /api/v1/users.json
 """
 return [
 url(r"^(?P<resource_name>%s)\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('dispatch_list'), name="api_dispatch_list"),
 url(r"^(?P<resource_name>%s)/schema\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('get_schema'), name="api_get_schema"),
 url(r"^(?P<resource_name>%s)/set/(?P<pk_list>\w[\w/;-]*)\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('get_multiple'), name="api_get_multiple"),
 url(r"^(?P<resource_name>%s)/(?P<pk>\w[\w/-]*)\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('dispatch_detail'), name="api_dispatch_detail"),
]

 def determine_format(self, request):
 """
 Used to determine the desired format from the request.format
 attribute.
 """
 if (hasattr(request, 'format') and
 request.format in self._meta.serializer.formats):
 return self._meta.serializer.get_mime_for_format(request.format)
 return super(UserResource, self).determine_format(request)

 def wrap_view(self, view):
 @csrf_exempt
 def wrapper(request, *args, **kwargs):
 request.format = kwargs.pop('format', None)
 wrapped_view = super(UserResource, self).wrap_view(view)
 return wrapped_view(request, *args, **kwargs)
 return wrapper

Adding to the Django Admin

If you’re using the django admin and ApiKeyAuthentication, you may want to see
or edit ApiKeys next to users. To do this, you need to unregister the built-in
UserAdmin, alter the inlines, and re-register it. This could go in any of your
admin.py files. You may also want to register ApiAccess and ApiKey models on
their own.:

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.models import User

from tastypie.admin import ApiKeyInline

class UserModelAdmin(UserAdmin):
 inlines = UserAdmin.inlines + [ApiKeyInline]

admin.site.unregister(User)
admin.site.register(User, UserModelAdmin)

Using SessionAuthentication

If your users are logged into the site & you want Javascript to be able to
access the API (assuming jQuery), the first thing to do is setup
SessionAuthentication:

from django.contrib.auth.models import User
from tastypie.authentication import SessionAuthentication
from tastypie.resources import ModelResource

class UserResource(ModelResource):
 class Meta:
 resource_name = 'users'
 queryset = User.objects.all()
 authentication = SessionAuthentication()

Then you’d build a template like:

<html>
 <head>
 <title></title>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 // We use ``.ajax`` here due to the overrides.
 $.ajax({
 // Substitute in your API endpoint here.
 url: '/api/v1/users/',
 contentType: 'application/json',
 // The ``X-CSRFToken`` evidently can't be set in the
 // ``headers`` option, so force it here.
 // This method requires jQuery 1.5+.
 beforeSend: function(jqXHR, settings) {
 // Pull the token out of the DOM.
 jqXHR.setRequestHeader('X-CSRFToken', $('input[name=csrfmiddlewaretoken]').val());
 },
 success: function(data, textStatus, jqXHR) {
 // Your processing of the data here.
 console.log(data);
 }
 });
 });
 </script>
 </head>
 <body>
 <!-- Include the CSRF token in the body of the HTML -->
 {% csrf_token %}
 </body>
</html>

There are other ways to make this function, with other libraries or other
techniques for supplying the token (see
https://docs.djangoproject.com/en/dev/ref/contrib/csrf/#ajax for an
alternative). This is simply a starting point for getting things working.

 Debugging Tastypie

Debugging Tastypie

There are some common problems people run into when using Tastypie for the first
time. Some of the common problems and things to try appear below.

“I’m getting XML output in my browser but I want JSON output!”

This is actually not a bug and JSON support is present in your Resource.
This issue is that Tastypie respects the Accept header your browser sends.
Most browsers send something like:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Note that application/xml is the first format that Tastypie
handles, hence you receive XML.

If you use curl from the command line, you should receive JSON by default:

curl http://localhost:8000/api/v1/

If you want JSON in the browser, simply append ?format=json to your URL.
Tastypie always respects this override first, before it falls back to the
Accept header.

Querying using Tastypie’s methods isn’t working/returning multiple objects

When calling obj_get (or another method that uses it, such as
dispatch_detail), make sure the fields you’re querying with are either
Meta.detail_uri_name or a field which appears in Meta.filtering

“What’s the format for a POST or PUT?”

You can view full schema for your resource through Inspecting The Resource’s Schema.

In general, Tastypie will accept resources in the same format as it gives you.
This means that you can see what any POST or PUT should look like by
performing a GET of that resource.

Creating a duplicate of an entry, using Python and Requests [http://python-requests.org]:

import requests
import json

response = requests.get('http://localhost:8000/api/v1/entry/1/')
event = json.loads(response.content)

del event['id'] # We want the server to assign a new id

response = requests.post('http://localhost:8000/api/v1/entry/',
 data=json.dumps(event),
 headers={'content-type': 'application/json'})

The new event should be almost identical, with the exception of readonly
fields. This method may fail if your model has a unique constraint, or
otherwise fails validation.

This is less likely to happen on PUT, except for application logic changes
(e.g. a last_update field). The following two curl commands replace and
entry with an copy:

curl -H 'Accept: application/json' 'http://localhost:8000/api/v1/entry/1/' | \
curl -H 'Content-Type: application/json' -X PUT --data @- "http://localhost:8000/api/v1/entry/1/"

You can do this over an entire collection as well:

curl -H 'Accept: application/json' 'http://localhost:8000/api/v1/entry/?limit=0' | \
curl -H 'Content-Type: application/json' -X PUT --data @- "http://localhost:8000/api/v1/entry/"

 Sites Using Tastypie

Sites Using Tastypie

The following sites are a partial list of sites using Tastypie. We’re always
interested in adding more sites, so please open a GitHub Issue or Pull Request
for this page and we’ll add you to the list.

Teachoo

Teachoo [https://www.teachoo.com] uses Tastypie for its API

LJWorld Marketplace

	http://www2.ljworld.com/marketplace/api/v1/?format=json

Forkinit

Read-only API access to recipes.

	http://forkinit.com/

	http://forkinit.com/api/v1/?format=json

Read The Docs

A hosted documentation site, primarily for Python docs. General purpose
read-write access.

	http://readthedocs.org/

	http://readthedocs.org/api/v1/?format=json

Luzme

An e-book search site that lets you fetch pricing information.

	http://luzme.com/

	https://luzme.readthedocs.io/en/latest/

Politifact

To power their mobile (iPhone/Android/Playbook) applications.

	http://www.politifact.com/mobile/

LocalWiki

LocalWiki [http://localwiki.org] is a tool for collaborating in local,
geographic communities. It’s using Tastypie to provide an geospatially-aware
REST API.

	https://localwiki.readthedocs.io/en/latest/api.html

	http://localwiki.org/blog/2012/aug/31/localwiki-api-released/

I-Am-CC.org

I-Am-CC.org [http://i-am-cc.org] is a tool for releasing Instagram photos
under a Creative Commons license.

	http://i-am-cc.org/api/?format=json

Dbpatterns

Dbpatterns is a service that allows you to create, share, explore database models on the web.

	http://dbpatterns.com

CourtListener

Read-only API providing 2.5M legal opinions and other judicial data via Solr/Sunburnt and Postgres (Django models).

	Site: https://www.courtlistener.com

	Code : https://bitbucket.org/mlissner/search-and-awareness-platform-courtlistener/src

 Contributing

Contributing

Tastypie is open-source and, as such, grows (or shrinks) & improves in part
due to the community. Below are some guidelines on how to help with the project.

Philosophy

	Tastypie is BSD-licensed. All contributed code must be either

	the original work of the author, contributed under the BSD, or…

	work taken from another project released under a BSD-compatible license.

	GPL’d (or similar) works are not eligible for inclusion.

	Tastypie’s git master branch should always be stable, production-ready &
passing all tests.

	Major releases (1.x.x) are commitments to backward-compatibility of the public APIs.
Any documented API should ideally not change between major releases.
The exclusion to this rule is in the event of either a security issue
or to accommodate changes in Django itself.

	Minor releases (x.3.x) are for the addition of substantial features or major
bugfixes.

	Patch releases (x.x.4) are for minor features or bugfixes.

Guidelines For Reporting An Issue/Feature

So you’ve found a bug or have a great idea for a feature. Here’s the steps you
should take to help get it added/fixed in Tastypie:

	First, check to see if there’s an existing issue/pull request for the
bug/feature. All issues are at https://github.com/django-tastypie/django-tastypie/issues
and pull reqs are at https://github.com/django-tastypie/django-tastypie/pulls.

	If there isn’t one there, please file an issue. The ideal report includes:

	A description of the problem/suggestion.

	How to recreate the bug.

	If relevant, including the versions of your:

	Python interpreter

	Django

	Tastypie

	Optionally of the other dependencies involved

	Ideally, creating a pull request with a (failing) test case demonstrating
what’s wrong. This makes it easy for us to reproduce & fix the problem.
Instructions for running the tests are at Welcome to Tastypie!

You might also hop into the IRC channel (#tastypie on irc.freenode.net)
& raise your question there, as there may be someone who can help you with a
work-around.

Guidelines For Contributing Code

If you’re ready to take the plunge & contribute back some code/docs, the
process should look like:

	Fork the project on GitHub into your own account.

	Clone your copy of Tastypie.

	Make a new branch in git & commit your changes there.

	Push your new branch up to GitHub.

	Again, ensure there isn’t already an issue or pull request out there on it.
If there is & you feel you have a better fix, please take note of the issue
number & mention it in your pull request.

	Create a new pull request (based on your branch), including what the
problem/feature is, versions of your software & referencing any related
issues/pull requests.

In order to be merged into Tastypie, contributions must have the following:

	A solid patch that:

	is clear.

	works across all supported versions of Python/Django.

	follows the existing style of the code base (mostly PEP-8).

	comments included as needed.

	A test case that demonstrates the previous flaw that now passes
with the included patch.

	If it adds/changes a public API, it must also include documentation
for those changes.

	Must be appropriately licensed (see “Philosophy”).

	Adds yourself to the AUTHORS file.

Please also:

	Unless your change only modifies the documentation, add the issue you’re
solving to the list in docs/release_notes/dev.rst, include issue and PR
numbers.

	Squash your changes down to a single commit, or down to one commit containing
your failing tests and one more commit containing the fix that makes those
tests pass.

If your contribution lacks any of these things, they will have to be added
by a core contributor before being merged into Tastypie proper, which may take
substantial time for the all-volunteer team to get to.

Guidelines For Core Contributors

If you’ve been granted the commit bit, here’s how to shepherd the changes in:

	Any time you go to work on Tastypie, please use git pull --rebase to fetch
the latest changes.

	Any new features/bug fixes must meet the above guidelines for contributing
code (solid patch/tests passing/docs included).

	Commits are typically cherry-picked onto a branch off master.

	This is done so as not to include extraneous commits, as some people submit
pull reqs based on their git master that has other things applied to it.

	A set of commits should be squashed down to a single commit.

	git merge --squash is a good tool for performing this, as is
git rebase -i HEAD~N.

	This is done to prevent anyone using the git repo from accidently pulling
work-in-progress commits.

	Commit messages should use past tense, describe what changed & thank anyone
involved. Examples:

"""Added a new way to do per-object authorization."""
"""Fixed a bug in ``Serializer.to_xml``. Thanks to joeschmoe for the report!"""
"""BACKWARD-INCOMPATIBLE: Altered the arguments passed to ``Bundle.__init__``.

Further description appears here if the change warrants an explanation
as to why it was done."""

	For any patches applied from a contributor, please ensure their name appears
in the AUTHORS file.

	When closing issues or pull requests, please reference the SHA in the closing
message (i.e. Thanks! Fixed in SHA: 6b93f6). GitHub will automatically
link to it.

 Release Notes

Release Notes

	dev

	v0.14.3

	v0.14.2

	v0.14.1

	v0.14.0

	v0.13.3

	v0.13.2

	v0.13.1

	v0.13.0

	v0.12.2

	v0.12.1

	v0.12.0

	v0.11.1

	v0.11.0

	v0.10.0

	v0.9.16

	v0.9.15

	v0.9.14

	v0.9.13

 dev

dev

The current in-progress version. Put your notes here so they can be easily
copied to the release notes for the next release.

Major changes

Bugfixes

	Example Bugfix (Closes #PR_Number)

 v0.14.3

v0.14.3

	date:

	2019-12-16

Added support for Django 3.0; minor bugs and regressions fixed.
Drops explicit support for Django 2.1 (non-LTS).

This will be the last version to explicitly support Python 2.0.

 v0.14.2

v0.14.2

	date:

	2018-08-20

Added support for Django 2.1; minor bugs and regressions fixed.
Drops support for Django 1.8 LTS.

 v0.14.1

v0.14.1

	date:

	2018-04-09

Added support for Django 2.0; minor bugs and regressions fixed.
Adds abstract base classes for Resources - see documentation.
Adds optimization for getting multiple objects by id in a single query.

Bugfixes

	Add explicit error when ModelResource lacks object_class and queryset

	Update urls to slumber and biplist

	Alter length of URL field in ApiAccess model (to open-ended TextField)

	Fix Advanced Filtering example in documentation (with unit test)

	Fix regression in ToManyField.dehydrate with a null value. (#1544)

 v0.14.0

v0.14.0

	date:

	2017-07-03

Dropped support for all non-LTS versions of Django. Specifically supports Django 1.8 and 1.11.

Deprecations

	Removed ResourceTestCase and added ResourceTestCaseMixin.

Bugfixes

	Change OAuthAuthentication to use storage method to get user. (Closes #657)

	Fixed UnicodeDecodeError in _handle_500(). (Fixes #1190)

	Fix get_via_uri not working for alphabetic ids that contain the resource name (Fixes #1239, Closes #1240)

	Don’t enable unsupported formats by default. (Fixes #1451)

	Gave ApiKey a __str__ implementation that works in Python 2 and 3. (Fixes #1459, Closes #1460)

	Improved admin UI for API Keys (Closes #1262)

	Avoid double query on the_m2ms in ToManyField.dehydrate. (Closes #433)

	Allow ModelResource.Meta.fields = [] to disable introspection. ModelResource.Meta.fields = None or omitting ModelResource.Meta.fields allows introspection as usual. (Fixes #793)

	Added Resource.get_response_class_for_exception hook. (Closes #1154)

	Added UnsupportedSerializationFormat and UnsupportedDeserializationFormat exceptions, which are caught and result in HttpNotAcceptable (406 status) and HttpUnsupportedMediaType (415 status) responses, respectively. Previously these same types of errors woud have appeared as 400 BadRequest errors.

	Fix for datetime parsing error. (#1478)

	Gets rid of RemovedInDjango20Warning warning in Django 1.9 (Closes #1507)

 v0.13.3

v0.13.3

	date:

	2016-02-17

This is the final release of Tastypie that is compatible with Django 1.9.

Bugfixes

	Permit changing existing value on a ToOneField to None. (Closes #1449)

 v0.13.2

v0.13.2

	date:

	2016-02-14

Bugfixes

	Fix in Resource.save_related: related_obj can be empty in patch requests (introduced in #1378). (Fixes #1436)

	Fixed bug that prevented fitlering on related resources. apply_filters hook now used in obj_get. (Fixes #1435, Fixes #1443)

	Use build_filters in obj_get. (Fixes #1444)

	Updated DjangoAuthorization to disallow read unless a user has change permission. (#1407, PR #1409)

	Authorization classes now handle usernames containing spaces. Closes #966.

	
	Cleaned up old, unneeded code. (closes PR #1433)

	
	Reuse Django test Client.patch(). (@SeanHayes, closes #1442)

	Just a typo fix in the testing docs (by @bezidejni, closes #810)

	Removed references to patterns() (by @SeanHayes, closes #1437)

	Removed deprecated methods Resource.apply_authorization_limits and Authorization.apply_limits from code and documentation. (by @SeanHayes, closes #1383, #1045, #1284, #837)

	Updates docs/cookbook.rst to make sure it’s clear which url to import. (by @yuvadm, closes #716)

	Updated docs/tutorial.rst. Without “null=True, blank=True” parameters in Slugfield, expecting “automatic slug generation” in save method is pointless. (by @orges, closes #753)

	Cleaned up Riak docs. (by @SeanHayes, closes #275)

	Include import statement for trailing_slash. (by @ljosa, closes #770)

	Fix docs: Meta.filtering is actually a dict. (by @georgedorn, closes #807)

	Fix load data command. (by @blite, closes #357, #358)

	Related schemas no longer raise error when not URL accessible. (Fixes PR #1439)

	Avoid modifying Field instances during request/response cycle. (closes #1415)

	Removing the Manager dependency in ToManyField.dehydrate(). (Closes #537)

 v0.13.1

v0.13.1

	date:

	2016-01-25

Bugfixes

	Prevent muting non-tastypie’s exceptions (#1297, PR #1404)

	Gracefully handle UnsupportFormat exception (#1154, PR #1417)

	Add related schema urls (#782, PR #1309)

	Repr value must be str in Py2 (#1421, PR #1422)

	Fixed assertHttpAccepted (PR #1416)

 v0.13.0

v0.13.0

	date:

	2016-01-12

Dropped Django 1.5-1.6 support, added Django 1.9.

Bugfixes

	Various performance improvements (#1330, #1335, #1337, #1363)

	More descriptive error messages (#1201)

	Throttled requests now include Retry-After header. (#1204)

	In DecimalField.hydrate, catch decimal.InvalidOperation and raise ApiFieldError (#862)

	Add ‘primary_key’ Field To Schema (#1141)

	ContentTypes: Remove ‘return’ in __init__; remove redundant parentheses (#1090)

	Allow callable strings for ToOneField.attribute (#1193)

	Ensure Tastypie doesn’t return extra data it received (#1169)

	In DecimalField.hydrate, catch decimal.InvalidOperation and raise ApiFieldError (#862)

	Fixed tastypie’s losing received microseconds. (#1126)

	Data leakage fix (#1203)

	Ignore extra related data (#1336)

	Suppress Content-Type header on HTTP 204 (see #111) (#1054)

	Allow creation of related resources that have an ‘items’ related_name (supercedes #1000) (#1340)

	Serializers: remove unimplemented to_html/from_html (#1343)

	If GEOS is not installed then exclude geos related calls. (#1348)

	Fixed Resource.deserialize() to honor format parameter (#1354 #1356, #1358)

	Raise ValueError when trying to register a Resource class instead of a Resource instance. (#1361)

	Fix hydrating/saving of related resources. (#1363)

	Use Tastypie DateField for DateField on the model. (SHA: b248e7f)

	ApiFieldError on empty non-null field (#1208)

	Full schema (all schemas in a single request) (#1207)

	Added verbose_name to API schema. (#1370)

	Fixes Reverse One to One Relationships (Replaces #568) (#1378)

	Fixed “GIS importerror vs improperlyconfigured” (#1384)

	Fixed bug which occurs when detail_uri_name field has a default value (Issue #1323) (#1387)

	Fixed disabling cache using timeout=0, fixes #1213, #1212 (#1399)

	Removed Django 1.5-1.6 support, added 1.9 support. (#1400)

	stop using django.conf.urls.patterns (#1402)

	Fix for saving related items when resource_uri is provided but other unique data is not. (#1394) (#1410)

 v0.12.2

v0.12.2

	date:

	2015-07-16

Dropped Python 2.6 support, added Django 1.8.

Bugfixes

	Dropped support for Python 2.6

	Added support for Django 1.8

	Fix stale data caused by prefetch_related cache (SHA: b78661d)

 v0.12.1

v0.12.1

	date:

	2014-10-22

This release is a small bugfix release, specifically to remove accidentally
added files in the Wheel release.

 v0.12.0

v0.12.0

	date:

	2014-09-11

This release adds official support for both Django 1.7, as well as
several bugfixes.

Warning

If you were previously relying on importing the User model from
tastypie.compat, this import will no longer work correctly. This was
removed due to the way app-loading works in Django 1.7 & no great solution
for dodging this issue exists.

If you were using either of:

from tastypie.compat import User
from tastypie.compat import username_field

Please update your code as follows:

from tastypie.compat import get_user_model
from tastypie.compat import get_username_field

 v0.11.1

v0.11.1

	date:

	2014-05-22

This release is primarily a security release. The two issues fixed have been
present but unknown for a long time & ALL users are recommended to upgrade
where possible.

	Tastypie previously would accept a relation URI & solely parse out the
identifiers, ignoring if the URI was for the right resource. Where
'user': '/api/v1/users/1/', would be accepted as a User URI, you
could accidentally/intentionally pass something like
'user': '/api/v1/notes/1/', (notes rather than users), which
would assign it to the User with a pk=1. Tastypie
would resolve the URI, but proceed to only care about the kwargs, not
validating it was for the correct resource.

Tastypie now checks to ensure the resolving resource has a matching URI,
so these cases of mistaken identity can no longer happen (& with quicker
lookups). Thanks to Sergey Orshanskiy for the report!

Fixed in SHA: 6da76c6

	In some browsers (specifically Firefox), it was possible to construct a URL
that would include an XSS attack (specifically around the offset/limit
pagination parameters). Firefox seems to evaluate the JSON returned,
completing the attack. Safari & Chrome do not appear to be affected.

Tastypie now escapes all error messages that could be returned to the user
to prevent this kind of attack in the future. Thanks to Micah Hau